ترغب بنشر مسار تعليمي؟ اضغط هنا

A z = 3 Lyman Alpha Blob Associated with a Damped Lyman Alpha System Proximate to its Background Quasar

129   0   0.0 ( 0 )
 نشر من قبل Joseph Hennawi Dr
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joseph F. Hennawi




اسأل ChatGPT حول البحث

We report on the discovery of a bright Lyman alpha blob associated with the z=3 quasar SDSSJ124020.91+145535.6 which is also coincident with strong damped Lyman alpha absorption from a foreground galaxy (a so-called proximate damped Lyman alpha system; PDLA). The one dimensional spectrum acquired by the Sloan Digital Sky Survey (SDSS) shows a broad Lyman alpha emission line with a FWHM ~ 500 km/s and a luminosity of L_{Lya} = 3.9e43 erg/s superposed on the trough of the PDLA. Mechanisms for powering this large Lyman alpha luminosity are discussed. We argue against emission from HII regions in the PDLA galaxy since this requires an excessive star-formation rate ~ 500 Msun/yr and would correspond to the largest Lyman alpha luminosity ever measured from a damped Lyman alpha system or starburst galaxy. We use a Monte Carlo radiative transfer simulation to investigate the possibility that the line emission is fluorescent recombination radiation from the PDLA galaxy powered by the ionizing flux of the quasar, but find that the predicted Lyman alpha flux is several orders of magnitude lower than observed. We conclude that the Lyman alpha emission is not associated with the PDLA galaxy at all, but instead is intrinsic to the quasars host and similar to the extended Lyman alpha fuzz which is detected around many AGN. PDLAs are natural coronagraphs that block their background quasar at Lyman alpha, and we discuss how systems similar to SDSSJ124020.91+145535.6 might be used to image the neutral hydrogen in the PDLA galaxy in silhouette against the screen of extended Lyman alpha emission from the background quasar.



قيم البحث

اقرأ أيضاً

90 - C. Lemon , M. Millon , D. Sluse 2021
High-redshift binary quasars provide key insights into mergers and quasar activity, and are useful tools for probing the spatial kinematics and chemistry of galaxies along the line-of-sight. However, only three sub-10-kpc binaries have been confirmed above $z=1$. Gravitational lensing would provide a way to easily resolve such binaries, study them in higher resolution, and provide more sightlines, though the required alignment with a massive foreground galaxy is rare. Through image deconvolution of StanCam Nordic Optical Telescope (NOT) monitoring data, we reveal two further point sources in the known, $z approx 2.38$, quadruply lensed quasar (quad), J1721+8842. An ALFOSC/NOT long-slit spectrum shows that the brighter of these two sources is a quasar with $z = 2.369 pm 0.007$ based on the C III] line, while the C III] redshift of the quad is $z = 2.364 pm 0.003$. Lens modelling using point source positions rules out a single source model, favouring an isothermal lens mass profile with two quasar sources separated by $sim6.0$ kpc (0.73$^{prime prime}$) in projection. Given the resolving ability from lensing and current lensed quasar statistics, this discovery suggests a large population of undiscovered, unlensed sub-10-kpc binaries. We also analyse spectra of two images of the quad, showing narrow Ly$alpha$ emission within the trough of a proximate damped Ly$alpha$ absorber (PDLA). An apparent mismatch between the continuum and narrow line flux ratios provides a new potential tool for simultaneously studying microlensing and the quasar host galaxy. Signs of the PDLA are also seen in the second source, however a deeper spectrum is still required to confirm this. Thanks to the multiple lines-of-sight from lensing and two quasar sources, this system offers simultaneous sub-parsec and kpc-scale probes of a PDLA.
(Abridged) We performed a spectroscopic galaxy survey, complete to m<20.3 (L_B>0.15L_B* at z=0.3), within 100x100 of the quasar Q1127-145 (z=1.18). The VLT/UVES quasar spectrum contains three z<0.33 MgII absorption systems. We obtained eight new gala xy redshifts, adding to the four previously known, and galaxy star formation rates and metallicities were computed where possible. A strong MgII system [W_r(2796)=1.8A], which is a known DLA, had three previously identified galaxies; we found two additional galaxies associated with this system. These five galaxies form a group with diverse properties, such as a luminosity range of 0.04<L_B<0.63L_B*, an impact parameter range of 17<D<241kpc and velocity dispersion of 115km/s. The DLA group galaxy redshifts span beyond the 350km/s velocity spread of the metallic absorption lines of the DLA itself. The two brightest group galaxies have SFRs of a few Msun/yr and should not have strong winds. We have sufficient spectroscopic information to directly compare three of the five group galaxies (emission-line) metallicities with the DLA (absorption) metallicity: the DLA metallicity is 1/10th solar, substantially lower than the three galaxies which range between less than 1/2 solar to solar metallicity. HST/WFPC-2 imaging shows perturbed morphologies for the three brightest group galaxies, with tidal tails extending 25kpc. We favor a scenario where the DLA absorption originates from tidal debris in the group environment. Another absorber exhibits weak MgII absorption [W_r(2796)=0.03A] and had a previously identified galaxy at a similar redshift. We have identified a second galaxy associated with this system. Both galaxies have solar metallicities and unperturbed morphologies. The SFR of one galaxy is much lower than expected for strong outflows. Finally, we have identified five galaxies at large impact parameters with no associated MgII absorption.
We have observed three quasars, PKS 1127-145, Q 1331+171 and Q0054+144, with the ACIS-S aboard the Chandra X-ray Observatory, in order to measure soft X-ray absorption associated with intervening 21-cm and damped Ly$alpha$ absorbers. For PKS 1127-145 , we detect absorption which, if associated with an intervening z_{abs}=0.312 absorber, implies a metallicity of 23% solar. If the absorption is not at z_{abs}=0.312, then the metallicity is still constrained to be less than 23% solar. The advantage of the X-ray measurement is that the derived metallicity is insensitive to ionization, inclusion of an atom in a molecule, or depletion onto grains. The X-ray absorption is mostly due to oxygen, and is consistent with the oxygen abundance of 30% solar derived from optical nebular emission lines in a foreground galaxy at the redshift of the absorber. For Q1331+171 and Q 0054+144, only upper limits were obtained, although the exposure times were intentionally short, since for these two objects we were interested primarily in measuring flux levels to plan for future observations. The imaging results are presented in a companion paper.
We have completed spectroscopic observations using LRIS on the Keck 1 telescope of 30 very high redshift quasars, 11 selected for the presence of damped Ly-alpha absorption systems and 19 with redshifts z > 3.5 not previously surveyed for absorption systems. We have surveyed an additional 10 QSOs with the Lick 120 and the Anglo-Australian Telescope. We have combined these with previous data resulting in a statistical sample of 646 QSOs and 85 damped Ly-alpha absorbers with column densities N(HI) >= 2 x 10^20 atoms/cm^2 covering the redshift range 0.008 <= z <= 4.694. To make the data in our statistical sample more readily available for comparison with scenarios from various cosmological models, we provide tables that includes all 646 QSOs from our new survey and previously published surveys. They list the minimum and maximum redshift defining the redshift path along each line of sight, the QSO emission redshift, and when an absorber is detected, the absorption redshift and measured HI column density. [see the paper for the complete abstract]
Damped Lyman-alpha absorbers (DLAs), seen in absorption against a background quasar, provide the most detailed probes available of element abundances in the Universe over > 90 % of its age. DLAs can be used to observationally measure the global mean metallicity in the Universe and its evolution with time. Paradoxically, these observations are more difficult at lower redshifts, where the absorber rest-frame UV spectra are cut-off due to the atmospheric absorption. We present here high-resolution VLT/UVES observations of several elements contained in three DLAs and one sub-DLA with 0.6<z_abs<0.9. We detect Mg I, Mg II, Fe II, Zn II, Cr II, Mn II, Ti II and Ca II. Our observations more than double the high-resolution sample of [Zn/H] at z<1. We also report the discovery of three metal-rich systems, whereas most previous measurements show low N(HI)-weighted mean metallicity projecting to about 1/6th solar level at z=0. We derive [Zn/H]=-0.11+/-0.04 at z_abs=0.725, [Zn/H]=-0.54+/-0.20 at z_abs=0.740 and [Zn/H]=-0.49+/-0.22 at z_abs=0.652, plus one additional upper limit ([Zn/H]<-0.36 at z_abs=0.842). These measurements confirm the existence of quasar absorbers with relatively high metallicities based on abundance estimates free from the effect of dust depletion. Possible implications of these results for the metallicity of neutral gas phase in the past ~ 8 Gyr are presented and compared with models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا