ﻻ يوجد ملخص باللغة العربية
The Tate forms for elliptically fibered Calabi-Yau manifolds are reconsidered in order to determine their general validity. We point out that there were some implicit assumptions made in the original derivation of these Tate forms from the Tate algorithm. By a careful analysis of the Tate algorithm itself, we deduce that the Tate forms (without any futher divisiblity assumptions) do not hold in some instances and have to be replaced by a new type of ansatz. Furthermore, we give examples in which the existence of a Tate form can be globally obstructed, i.e., the change of coordinates does not extend globally to sections of the entire base of the elliptic fibration. These results have implications both for model-building and for the exploration of the landscape of F-theory vacua.
We construct a general class of new time dependent solutions of non-linear sigma models coupled to gravity. These solutions describe configurations of expanding or contracting codimension two solitons which are not subject to a constraint on the tota
We propose 4-point S-matrices for three-dimensional F-theory. We will use the twistor formalism to facilitate constructing the amplitude. We write the amplitude in a way such that the F-symmetry (U-duality symmetry) is manifest. The amplitude can be
In this work we analyze F-theory and Type IIB orientifold compactifications to study $alpha $-corrections to the four-dimensional, $mathcal{N} = 1$ effective actions. In particular, we obtain corrections to the Kahlermoduli space metric and its compl
In the quest for mathematical foundations of M-theory, the Hypothesis H that fluxes are quantized in Cohomotopy theory, implies, on flat but possibly singular spacetimes, that M-brane charges locally organize into equivariant homotopy groups of spher
We consider the construction of a topological version of F-theory on a particular $Spin(7)$ 8-manifold which is a Calabi-Yau 3-fold times a 2-torus. We write an action for this theory in eight dimensions and reduce it to lower dimensions using Hitchi