ﻻ يوجد ملخص باللغة العربية
We construct a general class of new time dependent solutions of non-linear sigma models coupled to gravity. These solutions describe configurations of expanding or contracting codimension two solitons which are not subject to a constraint on the total tension. The two dimensional metric on the space transverse to the defects is determined by the Liouville equation. This space can be compact or non-compact, and of any topology. We show that this construction can be applied naturally in type IIB string theory to find backgrounds describing a number of 7-branes larger than 24.
We propose 4-point S-matrices for three-dimensional F-theory. We will use the twistor formalism to facilitate constructing the amplitude. We write the amplitude in a way such that the F-symmetry (U-duality symmetry) is manifest. The amplitude can be
In the quest for mathematical foundations of M-theory, the Hypothesis H that fluxes are quantized in Cohomotopy theory, implies, on flat but possibly singular spacetimes, that M-brane charges locally organize into equivariant homotopy groups of spher
We consider the construction of a topological version of F-theory on a particular $Spin(7)$ 8-manifold which is a Calabi-Yau 3-fold times a 2-torus. We write an action for this theory in eight dimensions and reduce it to lower dimensions using Hitchi
The Tate forms for elliptically fibered Calabi-Yau manifolds are reconsidered in order to determine their general validity. We point out that there were some implicit assumptions made in the original derivation of these Tate forms from the Tate algor
It has recently been shown that F-theory based constructions provide a potentially promising avenue for engineering GUT models which descend to the MSSM. In this note we show that in the presence of background fluxes, these models automatically achie