ﻻ يوجد ملخص باللغة العربية
Theory is presented for the phase stability of mixtures containing nanospheres and non-adsorbing reversible supramolecular polymers. This was made possible by incorporating the depletion thickness and osmotic pressure of reversible supramolecular polymer chains into generalized free-volume theory, recently developed for investigating the phase behaviour of colloidal spheres mixed with interacting polymers [Adv. Colloid Interface Sci. 143 (2008) 1-47]. It follows that the fluidfluid phase stability region where reversible supramolecular polymer chains can be mixed with nanospheres is sensitive to the energy of scission between the monomers and to the nanoparticle radius. One can then expect the fluidfluid coexistence curves to have a strong dependence on temperature and that shifting of phase boundaries within a single experimental system should be possible by varying the temperature. The calculations reveal the width of the stability region to be rather small. This implies that phase homogeneity of product formulations containing reversible supramolecular polymers is only possible at low nanoparticle concentrations.
We report Monte Carlo simulations of the self-assembly of supramolecular polymers based on a model of patchy particles. We find a first-order phase transition, characterized by hysteresis and nucleation, toward a solid bundle of polymers, of length m
In this paper we study a system of entangled chains that bear reversible cross-links in a melt state. The cross-links are tethered uniformly on the backbone of each chain. A slip-link type model for the system is presented and solved for the relaxati
We present micro-rheological measurments of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a violation of the Stokes-Einstein relation based
We have performed light-scattering measurements in dilute and semidilute polymer solutions of polystyrene in toluene when subjected to stationary temperature gradients. Five solutions with concentrations below and one solution with a concentration ab
We find that conjugated polymers can undergo reversible structural phase transitions during electrochemical oxidation and ion injection. We study poly[2,5-bis(thiophenyl)-1,4-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene] (PB2T-TEG), a conjugated p