ترغب بنشر مسار تعليمي؟ اضغط هنا

A Reversible Structural Phase Transition by Electrochemical Ion Injection into a Conjugated Polymer

59   0   0.0 ( 0 )
 نشر من قبل Connor Bischak
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find that conjugated polymers can undergo reversible structural phase transitions during electrochemical oxidation and ion injection. We study poly[2,5-bis(thiophenyl)-1,4-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene] (PB2T-TEG), a conjugated polymer with glycolated side chains. Using grazing incidence wide angle X-ray scattering (GIWAXS), we show that, in contrast to previously known polymers, this polymer switches between two structurally distinct crystalline phases associated with electrochemical oxidation/reduction in an aqueous electrolyte. Importantly, we show that this unique phase change behavior has important physical consequences for ion transport. Notably, using moving front experiments visualized by both optical microscopy and super-resolution photoinduced force microscopy (PiFM), we show that a propagating ion front in PB2T-TEG exhibits non-Fickian transport, retaining a sharp step-edge profile, in stark contrast to the Fickian diffusion more commonly observed. This structural phase transition is reminiscent of those accompanying ion uptake in inorganic materials like LiFePO$_{4}$. We propose that engineering similar properties in future conjugated polymers may enable the realization of new materials with superior performance in electrochemical energy storage or neuromorphic memory applications.



قيم البحث

اقرأ أيضاً

Conjugated polymer-based organic electrochemical transistors (OECTs) are being studied for applications ranging from biochemical sensing to neural interfaces. While new conjugated polymers are being developed that can interface digital electronics wi th the aqueous chemistry of life, the vast majority of high-performance, high-mobility organic transistor materials developed over the past decades are extremely poor at taking up biologically-relevant ions. Here we incorporate an ion exchange gel into an OECT, demonstrating that this structure is capable of taking up biologically-relevant ions from solution and injecting larger, more hydrophobic ions into the underlying polymer semiconductor active layer in multiple hydrophobic conjugated polymers. Using poly[2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene] (PBTTT) as a model semiconductor active layer and a blend of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIM TFSI) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the ion exchange gel, we demonstrate more than a four order of magnitude improvement in OECT device transconductance and a one hundred-fold increase in ion injection kinetics. We demonstrate the ability of the ion exchange gel OECT to record biological signals by measuring the action potentials of a Venus flytrap plant. These results show the possibility of using interface engineering to open up a wider palette of organic semiconductor materials as OECTs that can be gated by aqueous solutions.
The B2-ordered alloy FeRh shows a metamagnetic phase transition, transforming from antiferromagnetic (AF) to ferromagnetic (FM) order at a temperature $T_mathrm{t} sim 380 $~K in bulk. As well as temperature, the phase transition can be triggered by many means such as strain, chemical doping, or magnetic or electric fields. Its first-order nature means that phase coexistence is possible. Here we show that a phase boundary in a 300~nm diameter nanopillar, controlled by a doping gradient during film growth, is moved by an electrical current in the direction of electron flow. We attribute this to spin injection from one magnetically ordered phase region into the other driving the phase transition in a region just next to the phase boundary. The associated change in resistance of the nanopillar shows memristive properties, suggesting potential applications as memory cells or artificial synapses in neuromorphic computing schemes.
SnSe monolayers experience a temperature induced two-dimensional Pnm2$_1 to$ P4/nmm structural transformation precipitated by the softening of vibrational modes. The standard theoretical treatment of thermoelectricity---which relies on a zero tempera ture phonon dispersion and on a zero temperature electronic structure---is incapable of describing thermoelectric phenomena induced by structural transformations. Relying on structural data obtained from {em ab initio} molecular dynamics calculations that is utilized in a non-standard way to inform of electronic and vibrational transport coefficients, the present work establishes a general route to understand thermoelectricity across phase transitions. Similar to recent experimental observations pointing to an overestimated thermoelectric figure of merit $ZT$ past the transition temperature, our work indicates a smaller $ZT$ when compared to its value predicted by the standard paradigm. Its decrease is related to the dramatic changes in the electrical conductivity and lattice thermal conductivity as the structural transformation ensues. Though exemplified on a SnSe monolayer, the method does not have any built-in assumptions concerning dimensionality, and thus applicable to arbitrary thermoelectric materials in one, two, and three dimensions.
The objective of this work is to study the role of shear on the rupture of ultrathin polymer films. To do so, a finite-difference numerical scheme for the resolution of the thin film equation was set up taking into account capillary and van der Waals (vdW) forces. This method was validated by comparing the dynamics obtained from an initial harmonic perturbation to established theoretical predictions. With the addition of shear, three regimes have then been evidenced as a function of the shear rate. In the case of low shear rates the rupture is delayed when compared to the no-shear problem, while at higher shear rates it is even suppressed: the perturbed interface goes back to its unperturbed state over time. In between these two limiting regimes, a transient one in which shear and vdW forces balance each other, leading to a non-monotonic temporal evolution of the perturbed interface, has been identified. While a linear analysis is sufficient to describe the rupture time in the absence of shear, the nonlinearities appear to be essential otherwise.
Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectr icity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO$_2$ and ZrO$_2$) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO$_2$ gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO$_2$ and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا