ﻻ يوجد ملخص باللغة العربية
Model-independent constraints for the neutron-triton and proton-Helium-3 scattering lengths are calculated with a leading-order interaction derived from an effective field theory without explicit pions. Using the singlet neutron-proton scattering length, the deuteron, and the triton binding energy as input, the predictions $ants=9.2pm2.6 $fm, $antt=7.6pm1.6 $fm, $aphes=3.6pm0.32 $fm, and $aphet=3.1pm 0.23 $fm are obtained. The calculations employ the resonating group method and include the Coulomb interaction when appropriate. The theoretical uncertainty is assessed via a variation of the regulator parameter of the short-distance interaction from $400 $MeV to $1.6 $GeV. The phase-shift and scattering-length results for the proton-Helium-3 system are consistent with a recent phase shift analysis and with model calculations. For neutron-triton, the results for the scattering lengths in both singlet and triplet channels are significantly smaller than suggested by R-matrix and partial-wave-analysis extractions from data. For a better understanding of this discrepancy, the sensitivity of the low-energy four-body scattering system to variations in the neutron-neutron and proton-proton two-nucleon scattering lengths is calculated. Induced by strong charge-symmetry-breaking contact interactions, this dependence is found insignificant. In contrast, a strong correlation between the neutron-triton scattering length and the triton binding energy analogous to the Phillips line is found.
We compute a model-independent correlation between the difference of neutron-neutron and proton-proton scattering lengths |a(nn)-a^C(pp)| and the splitting in binding energies between Helium-3 and tritium nuclei. We use the effective field theory wit
The Kohn variational principle and the hyperspherical harmonics technique are applied to study n-3H elastic scattering at low energies. In this contribution the first results obtained using a non-local realistic interaction derived from the chiral pe
Background: Theoretical calculations of the four-particle scattering above the four-cluster breakup threshold are technically very difficult due to nontrivial singularities or boundary conditions. Further complications arise when the long-range Coulo
Proton-${}^3$H elastic scattering and charge-exchange reaction ${}^3$H$(p,n){}^3$He in the energy regime above four-nucleon breakup threshold are described in the momentum-space transition operator framework. Fully converged results are obtained usin
Emissions of free neutrons and protons from the central collisions of 124Sn+124Sn and 112Sn+112Sn reactions are simulated using the Improved Quantum Molecular Dynamics model with two different density dependence of the symmetry energy in the nuclear