ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculation of proton-${}^3$He elastic scattering between 7 and 35 MeV

257   0   0.0 ( 0 )
 نشر من قبل Arnoldas Deltuva
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: Theoretical calculations of the four-particle scattering above the four-cluster breakup threshold are technically very difficult due to nontrivial singularities or boundary conditions. Further complications arise when the long-range Coulomb force is present. Purpose: We aim at calculating proton-${}^3$He elastic scattering observables above three- and four-cluster breakup threshold. Methods: We employ Alt, Grassberger, and Sandhas (AGS) equations for the four-nucleon transition operators and solve them in the momentum-space framework using the complex-energy method whose accuracy and practical applicability is improved by a special integration method. Results: Using realistic nuclear interaction models we obtain fully converged results for the proton-${}^3$He elastic scattering. The differential cross section, proton and ${}^3$He analyzing powers, spin correlation and spin transfer coefficients are calculated at proton energies ranging from 7 to 35 MeV. Effective three- and four-nucleon forces are included via the explicit excitation of a nucleon to a $Delta$ isobar. Conclusions: Realistic proton-${}^3$He scattering calculations above the four-nucleon breakup threshold are feasible. There is quite good agreement between the theoretical predictions and experimental data for the proton-${}^3$He scattering in the considered energy regime. The most remarkable disagreements are the peak of the proton analyzing power at lower energies and the minimum of the differential cross section at higher energies. Inclusion of the $Delta$ isobar reduces the latter discrepancy.



قيم البحث

اقرأ أيضاً

183 - A. Deltuva , A. C. Fonseca 2015
Proton-${}^3$H elastic scattering and charge-exchange reaction ${}^3$H$(p,n){}^3$He in the energy regime above four-nucleon breakup threshold are described in the momentum-space transition operator framework. Fully converged results are obtained usin g realistic two-nucleon potentials and two-proton Coulomb force as dynamic input. Differential cross section, proton analyzing power, outgoing neutron polarization, and proton-to-neutron polarization transfer coefficients are calculated between 6 and 30 MeV proton beam energy. Good agreement with the experimental data is found for the differential cross section both in elastic and charge-exchange reactions; the latter shows a complicated energy and angular dependence. The most sizable discrepancies between predictions and data are found for the proton analyzing power and outgoing neutron polarization in the charge-exchange reaction, while the respective proton-to-neutron polarization transfer coefficients are well described by the calculations.
We apply the cluster-folding (CF) model for $vec{p}+^{6}$He scattering at 200 MeV, where the potential between $vec{p}$ and $^{4}$He is fitted to data on $vec{p}+^{4}$He scattering at 200 MeV. For $vec{p}+^{6}$He scattering at 200 MeV, the CF model r eproduces measured differential cross section with no free parameter, We then predict the analyzing power $A_y(q)$ with the CF model, where $q$ is the transfer momentum. Johnson, Al-Khalili and Tostevin construct a theory for one-neutron halo scattering, taking (1) the adiabatic approximation and (2) neglecting the interaction between a valence neutron and a target, and yield a simple relationship between the elastic scattering of a halo nucleus and of its core under certain conditions. We improve their theory with (3) the eikonal approximation in order to determine $A_y(q)$ for $^{6}$He from the data on $A_y(q)$ for $^{4}$He. The improved theory is accurate, when approximation (1)--(3) are good. Among the three approximations, approximation (2) is most essential. The CF model shows that approximation (2) is good in $0.9 < q < 2.4$ fm$^{-1}$. In the improved theory, the $A_y(q)$ for $^{6}$He is the same as that for $^{4}$He. In $0.9 < q < 2.4$ fm$^{-1}$, we then predict $A_y(q)$ for $vec{p}+^{6}$He scattering at 200 MeV from measured $A_y(q)$ for $vec{p}+^{4}$He scattering at 200 MeV. We thus predict $A_y(q)$ with the model-dependent and the model-independent prescription. The ratio of differential cross sections measured for $^{6}$He to that for $^{4}$He is related to the wave function of $^{6}$He. We then determine the radius between $^{4}$He and the center-of-mass of valence two neutrons in $^{6}$He. The radius is 5.77 fm.
122 - A. Deltuva , A. C. Fonseca 2014
Microscopic calculations of four-body collisions become very challenging in the energy regime above the threshold for four free particles. The neutron-${}^3$He scattering is an example of such process with elastic, rearrangement, and breakup channels . We aim to calculate observables for elastic and inelastic neutron-${}^3$He reactions up to 30 MeV neutron energy using realistic nuclear force models. We solve the Alt, Grassberger, and Sandhas (AGS) equations for the four-nucleon transition operators in the momentum-space framework. The complex-energy method with special integration weights is applied to deal with the complicated singularities in the kernel of AGS equations. We obtain fully converged results for the differential cross section and neutron analyzing power in the neutron-${}^3$He elastic scattering as well as the total cross sections for inelastic reactions. Several realistic potentials are used, including the one with an explicit $Delta$ isobar excitation. There is reasonable agreement between the theoretical predictions and experimental data for the neutron-${}^3$He scattering in the considered energy regime. The most remarkable disagreements are seen around the minimum of the differential cross section and the extrema of the neutron analyzing power. The breakup cross section increases with energy exceeding rearrangement channels above 23 MeV.
We use the next-to-leading-order (NLO) amplitude in an effective field theory (EFT) for ${}^3$He + ${}^4$He $rightarrow {}^7$Be + $gamma$ to perform the extrapolation of higher-energy data to solar energies. At this order the EFT describes the captur e process using an s-wave scattering length and effective range, the asymptotic behavior of $^7$Be and its excited state, and short-distance contributions to the E1 capture amplitude. We use a Bayesian analysis to infer the multi-dimensional posterior of these parameters from capture data below 2 MeV. The total $S$-factor $S(0)= 0.578^{+0.015}_{-0.016}$ keV b at 68% degree of belief. We also find significant constraints on $^3$He-$^4$He scattering parameters.
We present new accurate measurements of the differential cross section $sigma(theta)$ and the proton analyzing power $A_{y}$ for proton-$^{3}$He elastic scattering at various energies. A supersonic gas jet target has been employed to obtain these low energy cross section measurements. The $sigma(theta)$ distributions have been measured at $E_{p}$ = 0.99, 1.59, 2.24, 3.11, and 4.02 MeV. Full angular distributions of $A_{y}$ have been measured at $E_{p}$ = 1.60, 2.25, 3.13, and 4.05 MeV. This set of high-precision data is compared to four-body variational calculations employing realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. For the unpolarized cross section the agreement between the theoretical calculation and data is good when a $3N$ potential is used. The comparison between the calculated and measured proton analyzing powers reveals discrepancies of approximately 50% at the maximum of each distribution. This is analogous to the existing ``$A_{y}$ Puzzle known for the past 20 years in nucleon-deuteron elastic scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا