ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-retracting motion of graphite micro-flakes: superlubricity in micrometer scale

118   0   0.0 ( 0 )
 نشر من قبل Zhe Liu Jefferson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Through experimental study, we reveal superlubricity as the mechanism of self-retracting motion of micrometer sized graphite flakes on graphite platforms by correlating respectively the lock-up or self-retraction states with the commensurate or incommensurate contacts. We show that the scale-dependent loss of self-retractability is caused by generation of contact interfacial defects. A HOPG structure is also proposed to understand our experimental observations, particularly in term of the polycrystal structure. The realisation of the superlubricity in micrometer scale in our experiments will have impact in the design and fabrication of micro/nanoelectromechanical systems based on graphitic materials.



قيم البحث

اقرأ أيضاً

We report the observation of a novel phenomenon, the self-retracting motion of graphite, in which tiny flakes of graphite, after being displaced to various suspended positions from islands of highly orientated pyrolytic graphite, retract back onto th e islands under no external influences. Our repeated probing and observing such flakes of various sizes indicate the existence of a critical size of flakes, approximately 35 micrometer, above which the self-retracting motion does not occur under the operation. This helps to explain the fact that the self-retracting motion of graphite has not been reported, because samples of natural graphite are typical larger than this critical size. In fact, reports of this phenomenon have not been found in the literature for single crystals of any kinds. A model that includes the static and dynamic shear strengths, the van der Waals interaction force, and the edge dangling bond interaction effect, was used to explain the observed phenomenon. These findings may conduce to create nano-electromechanical systems with a wide range of mechanical operating frequency from mega to giga hertzs.
Colloidal probe Atomic Force Microscopy (AFM) allows to explore sliding states of vanishing friction, i.e. superlubricity, in mesoscopic graphite contacts. In this respect, superlubricity is known to appear upon formation of a triboinduced transfer l ayer, originated by material transfer of graphene flakes from the graphitic substrate to the colloidal probe. It was suggested that friction vanishes due to crystalline incommensurability at the sliding interface thus formed. However several details are missing, including the roles of tribolayer roughness and of loading conditions. Hereafter we gain deeper insight into the tribological response of micrometric silica beads sliding on graphite under ambient conditions. We show that the tribotransferred flakes increase interfacial roughness from tenths to several nanometers, in fact causing a breakdown of adhesion and friction by one order of magnitude. Furthermore, they behave as protruding asperities dissipating mechanical energy via atomic-scale stick-slip instabilities. Remarkably, such contact junctions can undergo a load-driven transition from continuous superlubric sliding to dissipative stick-slip, that agrees with the single-asperity Prandtl-Tomlinson model. Our results indicate that friction at mesoscopic silica-graphite junctions depends on the specific energy landscape experienced by the topographically-highest triboinduced nanoasperity. Superlubricity may arise from the load-controlled competition between interfacial crystalline incommensurability and contact pinning effects.
We present a study of the magnetoresistance of highly oriented pyrolytic graphite (HOPG) as a function of the sample size. Our results show unequivocally that the magnetoresistance reduces with the sample size even for samples of hundreds of micromet ers size. This sample size effect is due the large mean free path and Fermi wavelength of carriers in graphite and may explain the observed practically absence of magnetoresistance in micrometer confined small graphene samples where quantum effects should be at hand. These were not taken into account in the literature yet and ask for a revision of experimental and theoretical work on graphite.
We calculate the friction of fully mobile graphene flakes sliding on graphite. For incommensurately stacked flakes, we find a sudden and reversible increase in friction with load, in agreement with experimental observations. The transition from smoot h sliding to stick-slip and the corresponding increase in friction is neither due to rotations to commensurate contact nor to dislocations but to a pinning caused by vertical distortions of edge atoms also when they are saturated by Hydrogen. This behavior should apply to all layered materials with strong in-plane bonding.
The authors proposed a simple model for the lattice thermal conductivity of graphene in the framework of Klemens approximation. The Gruneisen parameters were introduced separately for the longitudinal and transverse phonon branches through averaging over phonon modes obtained from the first-principles. The calculations show that Umklapp-limited thermal conductivity of graphene grows with the increasing linear dimensions of graphene flakes and can exceed that of the basal planes of bulk graphite when the flake size is on the order of few micrometers. The obtained results are in agreement with experimental data and reflect the two-dimensional nature of phonon transport in graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا