ترغب بنشر مسار تعليمي؟ اضغط هنا

Conduction through 71o domain walls in BiFeO3 thin films

154   0   0.0 ( 0 )
 نشر من قبل Beatriz Noheda
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Local conduction at domains and domains walls is investigated in BiFeO3 thin films containing mostly 71o domain walls. Measurements at room temperature reveal conduction through 71o domain walls. Conduction through domains could also be observed at high enough temperatures. It is found that, despite the lower conductivity of the domains, both are governed by the same mechanisms: in the low voltage regime electrons trapped at defect states are temperature-activated but the current is limited by the ferroelectric surface charges; in the large voltage regime, Schottky emission takes place and the role of oxygen vacancies is that of selectively increasing the Fermi energy at the walls and locally reducing the Schottky barrier. This understanding provides the key to engineering conduction paths in oxides.



قيم البحث

اقرأ أيضاً

Among the recent discoveries of domain wall functionalities, the observation of electrical conduction at ferroelectric domain walls in the multiferroic insulator BiFeO3 has opened exciting new possibilities. Here, we report evidence of electrical con duction also at 180{deg} ferroelectric domain walls in the simpler tetragonal ferroelectric PZT thin films. The observed conduction shows nonlinear, asymmetric current-voltage characteristics, thermal activation at high temperatures and high stability. We relate this behavior to the microscopic structure of the domain walls, allowing local defects segregation, and the highly asymmetric nature of the electrodes in our local probe measurements.
142 - Lu You , Shintaro Yasui , Xi Zou 2012
The structural and ferroelectric domain variants of highly-strained BiFeO3 films grown on vicinal LaSrAlO4 substrates were studied by piezoelectric force microscopy and high-resolution X-ray reciprocal space mapping. Through symmetry breaking of the substrate surface, ferroelastic domain variants in the highly-strained MC phase BiFeO3 can be greatly reduced. Single-domain film can be obtained on substrates with large miscut angle, which is accompanied by the reduction of structural variants in the mixed-phase nanodomains. These findings lead to better understanding of the phase evolution and polarization rotation process in the strain-driven morphotropic phase system.
173 - J. Guyonnet , H. Bea , P. Paruch 2010
In purely c-axis oriented PbZr$_{0.2}$Ti$_{0.8}$O$_3$ ferroelectric thin films, a lateral piezoresponse force microscopy signal is observed at the position of 180{deg}domain walls, where the out-of-plane oriented polarization is reversed. Using elect ric force microscopy measurements we exclude electrostatic effects as the origin of this signal. Moreover, our mechanical simulations of the tip/cantilever system show that the small tilt of the surface at the domain wall below the tip does not satisfactorily explain the observed signal either. We thus attribute this lateral piezoresponse at domain walls to their sideways motion (shear) under the applied electric field. From simple elastic considerations and the conservation of volume of the unit cell, we would expect a similar lateral signal more generally in other ferroelectric materials, and for all types of domain walls in which the out-of-plane component of the polarization is reversed through the domain wall. We show that in BiFeO$_3$ thin films, with 180, 109 and 71{deg}domain walls, this is indeed the case.
Magnetic domain walls in thin films can be well analyzed using polarized neutron reflectometry. Well defined streaks in the off-specular spin-flip scattering maps are explained by neutron refraction at perpendicular N{e}el walls. The position of the streaks depends only on the magnetic induction within the domains, whereas the intensity of the off-specular magnetic scattering depends on the spin-flip probability at the domain walls and on the average size of the magnetic domains. This effect is fundamentally different and has to be clearly distinguished from diffuse scattering originating from the size distribution of magnetic domains. Polarized neutron reflectivity experiments were carried out using a $^3$He gas spin-filter with a analyzing power as high as 96% and a neutron transmission of approx 35%. Furthermore, the off-specular magnetic scattering was enhanced by using neutron resonance and neutron standing wave techniques.
In this work we report on the controlled fabrication of a self-assembled line network in highly epitaxial BiFeO3 thin films on top of LaAlO3 in the kinetically limited grown region by RF sputtering. As previously shown in the case of manganite thin f ilms, the remarkable degree of ordering is achieved using vicinal substrates with well-defined step-terrace morphology. Nanostructured BiFeO3 thin films show mixed-phase morphology. Besides typical formation following (100) and (010) axes, some mixed phase nanodomains are detected also in-between the regular line network. These particular microstructures open a playground for future applications in multiferroic nanomaterials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا