ﻻ يوجد ملخص باللغة العربية
In this work we report on the controlled fabrication of a self-assembled line network in highly epitaxial BiFeO3 thin films on top of LaAlO3 in the kinetically limited grown region by RF sputtering. As previously shown in the case of manganite thin films, the remarkable degree of ordering is achieved using vicinal substrates with well-defined step-terrace morphology. Nanostructured BiFeO3 thin films show mixed-phase morphology. Besides typical formation following (100) and (010) axes, some mixed phase nanodomains are detected also in-between the regular line network. These particular microstructures open a playground for future applications in multiferroic nanomaterials.
Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room-temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physic
Strong electronic correlations can produce remarkable phenomena such as metal-insulator transitions and greatly enhance superconductivity, thermoelectricity, or optical non-linearity. In correlated systems, spatially varying charge textures also ampl
The crystal structure of BiFeO3/BaxSr1-xTiO3 (BFO/BST) heterostructures with x = 0.2, 0.6 and 0.8, grown on single-crystal MgO (001) substrate was investigated by x-ray diffraction and Raman spectroscopy in order to determine the influence of mismatc
Layered multi-ferroic materials exhibit a variety of functional properties that can be tuned by varying the temperature and pressure. As-synthesized CuInP$_2$S$_6$ is a layered material that displays ferrielectric behavior at room temperature. When s
We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions, an enhancement of the coercive field (exchange enhancement