ترغب بنشر مسار تعليمي؟ اضغط هنا

Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide

139   0   0.0 ( 0 )
 نشر من قبل Claire Berger
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After the pioneering investigations into graphene-based electronics at Georgia Tech (GT), great strides have been made developing epitaxial graphene on silicon carbide (EG) as a new electronic material. EG has not only demonstrated its potential for large scale applications, it also has become an invaluable material for fundamental two-dimensional electron gas physics showing that only EG is on route to define future graphene science. It was long known that graphene mono and multilayers grow on SiC crystals at high temperatures in ultra-high vacuum. At these temperatures, silicon sublimes from the surface and the carbon rich surface layer transforms to graphene. However the quality of the graphene produced in ultrahigh vacuum is poor due to the high sublimation rates at relatively low temperatures. The GT team developed growth methods involving encapsulating the SiC crystals in graphite enclosures, thereby sequestering the evaporated silicon and bringing growth process closer to equilibrium. In this confinement controlled sublimation (CCS) process, very high quality graphene is grown on both polar faces of the SiC crystals. Since 2003, over 50 publications used CCS grown graphene, where it is known as the furnace grown graphene. Graphene multilayers grown on the carbon-terminated face of SiC, using the CCS method, were shown to consist of decoupled high mobility graphene layers. The CCS method is now applied on structured silicon carbide surfaces to produce high mobility nano-patterned graphene structures thereby demonstrating that EG is a viable contender for next-generation electronics. Here we present the CCS method and demonstrate several of epitaxial graphenes outstanding properties and applications.



قيم البحث

اقرأ أيضاً

We present a technique to tune the charge density of epitaxial graphene via an electrostatic gate that is buried in the silicon carbide substrate. The result is a device in which graphene remains accessible for further manipulation or investigation. Via nitrogen or phosphor implantation into a silicon carbide wafer and subsequent graphene growth, devices can routinely be fabricated using standard semiconductor technology. We have optimized samples for room temperature as well as for cryogenic temperature operation. Depending on implantation dose and temperature we operate in two gating regimes. In the first, the gating mechanism is similar to a MOSFET, the second is based on a tuned space charge region of the silicon carbide semiconductor. We present a detailed model that describes the two gating regimes and the transition in between.
The materials science of graphene grown epitaxially on the hexagonal basal planes of SiC crystals is reviewed. We show that the growth of epitaxial graphene on Si-terminated SiC(0001) is much different than growth on the C-terminated SiC(000 -1) surf ace, and discuss the physical structure of these graphenes. The unique electronic structure and transport properties of each type of epitaxial graphene is described, as well as progress toward the development of epitaxial graphene devices. This materials system is rich in subtleties, and graphene grown on the two polar faces differs in important ways, but all of the salient features of ideal graphene are found in these epitaxial graphenes, and wafer-scale fabrication of multi-GHz devices already has been achieved.
This article presents a review of epitaxial graphene on silicon carbide, from fabrication to properties, put in the context of other forms of graphene.
We use ultra-high vacuum chemical vapor deposition to grow polycrystalline silicon carbide (SiC) on c-plane sapphire wafers which are then annealed between 1250 and 1450{deg}C in vacuum to create epitaxial multilayer graphene (MLG). Despite the surfa ce roughness and small domain size of the polycrystalline SiC, a conformal MLG film is formed. By planarizing the SiC prior to graphene growth, a reduction of the Raman defect band is observed in the final MLG. The graphene formed on polished SiC films also demonstrates significantly more ordered layer-by-layer growth and increased carrier mobility for the same carrier density as the non-polished samples.
Large-area bilayer graphene (BG) is grown epitaxially on Ru(0001) surface and characterized by low temperature scanning tunneling microscopy. The lattice of the bottom layer of BG is stretched by 1.2%, while strain is absent from the top layer. The l attice mismatch between the two layers leads to the formation of a moire pattern with a periodicity of ~21.5 nm and a mixture of AA- and AB-stacking. The root3 x root3 superstructure around atomic defects is attributed to the inter-valley scattering of the delocalized pi-electrons, demonstrating that the as-grown BG behaves like intrinsic free-standing graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا