ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial Growth of Large-area Bilayer Graphene on Ru(0001)

152   0   0.0 ( 0 )
 نشر من قبل Yande Que
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-area bilayer graphene (BG) is grown epitaxially on Ru(0001) surface and characterized by low temperature scanning tunneling microscopy. The lattice of the bottom layer of BG is stretched by 1.2%, while strain is absent from the top layer. The lattice mismatch between the two layers leads to the formation of a moire pattern with a periodicity of ~21.5 nm and a mixture of AA- and AB-stacking. The root3 x root3 superstructure around atomic defects is attributed to the inter-valley scattering of the delocalized pi-electrons, demonstrating that the as-grown BG behaves like intrinsic free-standing graphene.



قيم البحث

اقرأ أيضاً

We study the formation of epitaxial graphene on Ru(0001) using fast x-ray photoelectron spectroscopy during the growth process. The assignment of different C 1s and Ru 3d core level components and their evolution during the growth process gives a det ailed insight into the graphene formation and the strongly varying graphene-Ru interaction strength within the large moire unit cell. Subsequent intercalation of oxygen can be achieved at elevated temperature and the core level spectra show a conversion of the strongly corrugated to quasi free-standing graphene, characterised by a single narrow C 1s component. This conversion and the accompanying flattening of the graphene layer is also confirmed by x-ray photoelectron diffraction. The effect of oxygen intercalation on the electronic structure is studied using angle-resolved photoemission of the valence band states. For graphene/Ru(0001), the strong graphene-substrate hybridisation disrupts the {pi}-band dispersion but oxygen intercalation fully restores the {pi}-band with a strong p-doping that shifts the Dirac point 785 meV above the Fermi level. The doping of the system is highly tunable, as the additional exposure to rubidium can convert the carrier filling to n-type with the Dirac point 970 meV below the Fermi level.
The thermal decomposition of SiC surface provides, perhaps, the most promising method for the epitaxial growth of graphene on a material useful in the electronics platform. Currently, efforts are focused on a reliable method for the growth of large-a rea, low-strain epitaxial graphene that is still lacking. We report here a novel method for the fast, single-step epitaxial growth of large-area homogeneous graphene film on the surface of SiC(0001) using an infrared CO2 laser (10.6 {mu}m) as the heating source. Apart from enabling extreme heating and cooling rates, which can control the stacking order of epitaxial graphene, this method is cost-effective in that it does not necessitate SiC pre-treatment and/or high vacuum, it operates at low temperature and proceeds in the second time scale, thus providing a green solution to EG fabrication and a means to engineering graphene patterns on SiC by focused laser beams. Uniform, low-strain graphene film is demonstrated by scanning electron microscopy and x-ray photoelectron, secondary ion mass, and Raman spectroscopies. Scalability to industrial level of the method described here appears to be realistic, in view of the high rate of CO2-laser induced graphene growth and the lack of strict sample-environment conditions.
206 - Thomas Brugger 2008
The electronic structure of a single layer graphene on Ru(0001) is compared with that of a single layer hexagonal boron nitride nanomesh on Ru(0001). Both are corrugated sp2 networks and display a pi-band gap at the K point of their 1 x 1 Brillouin z one. Graphene has a distinct Fermi surface which indicates that 0.1 electrons are transferred per 1 x 1 unit cell. Photoemission from adsorbed xenon identifies two distinct Xe 5p1/2 lines, separated by 240 meV, which reveals a corrugated electrostatic potential energy surface. These two Xe species are related to the topography of the system and have different desorption energies.
By combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy we reveal the structural and electronic properties of multilayer graphene on Ru(0001). We prove that large ethylene exposure allows to synthesize two distinct ph ases of bilayer graphene with different properties. The first phase has Bernal AB stacking with respect to the first graphene layer, displays weak vertical interaction and electron doping. The long-range ordered moire pattern modulates the crystal potential and induces replicas of the Dirac cone and minigaps. The second phase has AA stacking sequence with respect to the first layer, displays weak structural and electronic modulation and p-doping. The linearly dispersing Dirac state reveals the nearly-freestanding character of this novel second layer phase.
Realization of a free-standing graphene is always a demanding task. Here we use scanning probe microscopy and spectroscopy to study the crystallographic structure and electronic properties of the uniform free-standing graphene layers obtained by inte rcalation of oxygen monolayer in the strongly bonded graphene/Ru(0001) interface. Spectroscopic data show that such graphene layer is heavily p-doped with the Dirac point located at 552 meV above the Fermi level. Experimental data are understood within DFT and the observed effects are in good agreement with the theoretical data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا