ﻻ يوجد ملخص باللغة العربية
The tunable magnetism at graphene edges with lengths of up to 48 unit cells is analyzed by an exact diagonalization technique. For this we use a generalized interacting one-dimensional model which can be tuned continuously from a limit describing graphene zigzag edge states with a ferromagnetic phase, to a limit equivalent to a Hubbard chain, which does not allow ferromagnetism. This analysis sheds light onto the question why the edge states have a ferromagnetic ground state, while a usual one-dimensional metal does not. Essentially we find that there are two important features of edge states: (a) umklapp processes are completely forbidden for edge states; this allows a spin-polarized ground state. (b) the strong momentum dependence of the effective interaction vertex for edge states gives rise to a regime of partial spin-polarization and a second order phase transition between a standard paramagnetic Luttinger liquid and ferromagnetic Luttinger liquid.
We perform projective quantum Monte Carlo simulations of zigzag graphene nanoribbons within a realistic model with long-range Coulomb interactions. Increasing the relative strength of nonlocal interactions with respect to the on-site repulsion does n
We report on small-cluster exact-diagonalization calculations which prove the formation of electron-hole pairs (excitons) as prerequisite for spontaneous interlayer phase coherence in bilayer systems described by the extended Falicov-Kimball model. E
Using exact diagonalization, we study the projected Hamiltonian with Coulomb interaction in the 8 flat bands of first magic angle twisted bilayer graphene. Employing the U(4) (U(4)$times$U(4)) symmetries in the nonchiral (chiral) flat band limit, we
We study the magnetic properties of graphene edges and graphene/graphane interfaces under the influence of electrostatic gates. For this, an effective low-energy theory for the edge states, which is derived from the Hubbard model of the honeycomb lat
A bosonic field theory is derived for the tunable edge magnetism at graphene zigzag edges. The derivation starts from an effective fermionic theory for the interacting graphene edge states, derived previously from a two-dimensional interacting tight-