ﻻ يوجد ملخص باللغة العربية
We present results illustrating the construction of 3D topological cluster states with coherent state logic. Such a construction would be ideally suited to wave-guide implementations of quantum optical processing. We investigate the use of a ballistic CSign gate, showing that given large enough initial cat states, it is possible to build large 3D cluster states. We model X and Z basis measurements by displaced photon number detections and x-quadrature homodyne detections, respectively. We investigate whether teleportation can aid cluster state construction and whether the introduction of located loss errors fits within the topological cluster state framework.
The quantum computing scheme described in Phys. Rev. Lett. 98, 190504 (2007), when viewed as a cluster state computation, features a 3-D cluster state, novel adjustable strength error correction capable of correcting general errors through the correc
Defining a computational basis of pseudo-number states, we interpret a coherent state of large amplitude, $|alpha|ggfrac{d}{2pi}$, as a qudit --- a $d$-level quantum system --- in a state that is an even superposition of $d$ pseudo-number states. A p
We describe a fault-tolerant version of the one-way quantum computer using a cluster state in three spatial dimensions. Topologically protected quantum gates are realized by choosing appropriate boundary conditions on the cluster. We provide equivale
The development of a large scale quantum computer is a highly sought after goal of fundamental research and consequently a highly non-trivial problem. Scalability in quantum information processing is not just a problem of qubit manufacturing and cont
The quantum walk is a dynamical protocol which describes the motion of spinful particles on a lattice. Also, it has been demonstrated to be a powerful platform to explore topological quantum matter. Recently, the quantum walk in coherent state space