ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Topological Phase Transition via Quantum Walk in Coherent State Space

70   0   0.0 ( 0 )
 نشر من قبل Zi-Yong Ge
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum walk is a dynamical protocol which describes the motion of spinful particles on a lattice. Also, it has been demonstrated to be a powerful platform to explore topological quantum matter. Recently, the quantum walk in coherent state space has been proposed theoretically and realized experimentally. However, due to the inherent characteristics of coherent states, it is challenging to control the number of photons when we need the coherent space to be a nearly orthogonal space in practice. Here, we demonstrate that the nonorthogonality of coherent sates, on the one hand can be cancelled by multiple measurement, on the other hand, it is useful resource to characterize the nature of the system. Thus the number of photons of the system is controllable. We first present a feasible scheme to measure the wave function of quantum walks. Then we show that the expected number of photons of the coherent space is good observable to represent topological properties of the system, which reflected the advantage of coherent state space quantum walks. In addition, we propose an experimental protocol in a circuit quantum electrodynamics architecture, where a superconducting qubit is a coin while the cavity mode is used for quantum walk.



قيم البحث

اقرأ أيضاً

Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walks are proving to be effective simulators of such phenomena. Here we report the realization of a photonic q uantum walk showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional periodic systems, as in the Su-Schrieffer-Heeger model of polyacetylene. We find that the probability distribution moments of the walker position after many steps behave differently in the two topological phases and can be used as direct indicators of the quantum transition: while varying a control parameter, these moments exhibit a slope discontinuity at the transition point, and remain constant in the non-trivial phase. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer new general instruments for investigating quantum transitions in such complex systems.
72 - A. Ricottone , M. S. Rudner , 2020
We extend non-Hermitian topological quantum walks on a Su-Schrieffer-Heeger (SSH) lattice [M. S. Rudner and L. Levitov, Phys. Rev. Lett. 102, 065703 (2009)] to the case of non-Markovian evolution. This non-Markovian model is established by coupling e ach unit cell in the SSH lattice to a reservoir formed by a quasi-continuum of levels. We find a topological transition in this model even in the case of non-Markovian evolution, where the walker may visit the reservoir and return to the SSH lattice at a later time. The existence of a topological transition does, however, depend on the low-frequency properties of the reservoir, characterized by a spectral density $J(epsilon)propto |epsilon|^alpha$. In particular, we find a robust topological transition for a sub-Ohmic ($alpha<1$) and Ohmic ($alpha=1$) reservoir, but no topological transition for a super-Ohmic ($alpha>1$) reservoir. This behavior is directly related to the well-known localization transition for the spin-boson model. We confirm the presence of non-Markovian dynamics by explicitly evaluating a measure of Markovianity for this model.
We propose two experimental schemes for producing coherent-state superpositions which approximate different nonclassical states conditionally in traveling optical fields. Although these setups are constructed of a small number of linear optical eleme nts and homodyne measurements, they can be used to generate various photon number superpositions in which the number of constituent states can be higher than the number of measurements in the schemes. We determine numerically the parameters to achieve maximal fidelity of the preparation for a large variety of nonclassical states, such as amplitude squeezed states, squeezed number states, binomial states and various photon number superpositions. The proposed setups can generate these states with high fidelities and with success probabilities that can be promising for practical applications.
111 - C.R. Myers , T.C. Ralph 2011
We present results illustrating the construction of 3D topological cluster states with coherent state logic. Such a construction would be ideally suited to wave-guide implementations of quantum optical processing. We investigate the use of a ballisti c CSign gate, showing that given large enough initial cat states, it is possible to build large 3D cluster states. We model X and Z basis measurements by displaced photon number detections and x-quadrature homodyne detections, respectively. We investigate whether teleportation can aid cluster state construction and whether the introduction of located loss errors fits within the topological cluster state framework.
69 - Sergey Novikov 2018
In the quest to reboot computing, quantum annealing (QA) is an interesting candidate for a new capability. While it has not demonstrated an advantage over classical computing on a real-world application, many important regions of the QA design space have yet to be explored. In IARPAs Quantum Enhanced Optimization (QEO) program, we have opened some new lines of inquiry to get to the heart of QA, and are designing testbed superconducting circuits and conducting key experiments. In this paper, we discuss recent experimental progress related to one of the key design dimensions: qubit coherence. Using MIT Lincoln Laboratorys qubit fabrication process and extending recent progress in flux qubits, we are implementing and measuring QA-capable flux qubits. Achieving high coherence in a QA context presents significant new engineering challenges. We report on techniques and preliminary measurement results addressing two of the challenges: crosstalk calibration and qubit readout. This groundwork enables exploration of other promising features and provides a path to understanding the physics and the viability of quantum annealing as a computing resource.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا