ﻻ يوجد ملخص باللغة العربية
The quantum walk is a dynamical protocol which describes the motion of spinful particles on a lattice. Also, it has been demonstrated to be a powerful platform to explore topological quantum matter. Recently, the quantum walk in coherent state space has been proposed theoretically and realized experimentally. However, due to the inherent characteristics of coherent states, it is challenging to control the number of photons when we need the coherent space to be a nearly orthogonal space in practice. Here, we demonstrate that the nonorthogonality of coherent sates, on the one hand can be cancelled by multiple measurement, on the other hand, it is useful resource to characterize the nature of the system. Thus the number of photons of the system is controllable. We first present a feasible scheme to measure the wave function of quantum walks. Then we show that the expected number of photons of the coherent space is good observable to represent topological properties of the system, which reflected the advantage of coherent state space quantum walks. In addition, we propose an experimental protocol in a circuit quantum electrodynamics architecture, where a superconducting qubit is a coin while the cavity mode is used for quantum walk.
Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walks are proving to be effective simulators of such phenomena. Here we report the realization of a photonic q
We extend non-Hermitian topological quantum walks on a Su-Schrieffer-Heeger (SSH) lattice [M. S. Rudner and L. Levitov, Phys. Rev. Lett. 102, 065703 (2009)] to the case of non-Markovian evolution. This non-Markovian model is established by coupling e
We propose two experimental schemes for producing coherent-state superpositions which approximate different nonclassical states conditionally in traveling optical fields. Although these setups are constructed of a small number of linear optical eleme
We present results illustrating the construction of 3D topological cluster states with coherent state logic. Such a construction would be ideally suited to wave-guide implementations of quantum optical processing. We investigate the use of a ballisti
In the quest to reboot computing, quantum annealing (QA) is an interesting candidate for a new capability. While it has not demonstrated an advantage over classical computing on a real-world application, many important regions of the QA design space