ﻻ يوجد ملخص باللغة العربية
We investigate proper scoring rules for continuous distributions on the real line. It is known that the log score is the only such rule that depends on the quoted density only through its value at the outcome that materializes. Here we allow further dependence on a finite number $m$ of derivatives of the density at the outcome, and describe a large class of such $m$-local proper scoring rules: these exist for all even $m$ but no odd $m$. We further show that for $mgeq2$ all such $m$-local rules can be computed without knowledge of the normalizing constant of the distribution.
A scoring rule is a loss function measuring the quality of a quoted probability distribution $Q$ for a random variable $X$, in the light of the realized outcome $x$ of $X$; it is proper if the expected score, under any distribution $P$ for $X$, is mi
Proper scoring rules are commonly applied to quantify the accuracy of distribution forecasts. Given an observation they assign a scalar score to each distribution forecast, with the the lowest expected score attributed to the true distribution. The e
This paper forges a strong connection between two seemingly unrelated forecasting problems: incentive-compatible forecast elicitation and forecast aggregation. Proper scoring rules are the well-known solution to the former problem. To each such rule
In this paper, we deal with the problem of calibrating thresholding rules in the setting of Poisson intensity estimation. By using sharp concentration inequalities, oracle inequalities are derived and we establish the optimality of our estimate up to
This paper introduces an objective for optimizing proper scoring rules. The objective is to maximize the increase in payoff of a forecaster who exerts a binary level of effort to refine a posterior belief from a prior belief. In this framework we cha