ﻻ يوجد ملخص باللغة العربية
This paper forges a strong connection between two seemingly unrelated forecasting problems: incentive-compatible forecast elicitation and forecast aggregation. Proper scoring rules are the well-known solution to the former problem. To each such rule s we associate a corresponding method of aggregation, mapping expert forecasts and expert weights to a consensus forecast, which we call *quasi-arithmetic (QA) pooling* with respect to s. We justify this correspondence in several ways: - QA pooling with respect to the two most well-studied scoring rules (quadratic and logarithmic) corresponds to the two most well-studied forecast aggregation methods (linear and logarithmic). - Given a scoring rule s used for payment, a forecaster agent who sub-contracts several experts, paying them in proportion to their weights, is best off aggregating the experts reports using QA pooling with respect to s, meaning this strategy maximizes its worst-case profit (over the possible outcomes). - The score of an aggregator who uses QA pooling is concave in the experts weights. As a consequence, online gradient descent can be used to learn appropriate expert weights from repeated experiments with low regret. - The class of all QA pooling methods is characterized by a natural set of axioms (generalizing classical work by Kolmogorov on quasi-arithmetic means).
We investigate proper scoring rules for continuous distributions on the real line. It is known that the log score is the only such rule that depends on the quoted density only through its value at the outcome that materializes. Here we allow further
This paper introduces an objective for optimizing proper scoring rules. The objective is to maximize the increase in payoff of a forecaster who exerts a binary level of effort to refine a posterior belief from a prior belief. In this framework we cha
All proper scoring rules incentivize an expert to predict emph{accurately} (report their true estimate), but not all proper scoring rules equally incentivize emph{precision}. Rather than treating the experts belief as exogenously given, we consider a
This paper introduces an optimization problem for proper scoring rule design. Consider a principal who wants to collect an agents prediction about an unknown state. The agent can either report his prior prediction or access a costly signal and report
A scoring rule is a loss function measuring the quality of a quoted probability distribution $Q$ for a random variable $X$, in the light of the realized outcome $x$ of $X$; it is proper if the expected score, under any distribution $P$ for $X$, is mi