ﻻ يوجد ملخص باللغة العربية
The extragalactic background light at far-infrared wavelengths originates from optically-faint, dusty, star-forming galaxies in the universe with star-formation rates at the level of a few hundred solar masses per year. Due to the relatively poor spatial resolution of far-infrared telescopes, the faint sub-millimetre galaxies are challenging to study individually. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations. A previous attempt at measuring this power spectrum resulted in the suggestion that the clustering amplitude is below the level computed with a simple ansatz based on a halo model. Here we report a clear detection of the excess clustering over the linear prediction at arcminute angular scales in the power spectrum of brightness fluctuations at 250, 350, and 500 microns. From this excess, we find that sub-millimetre galaxies are located in dark matter halos with a minimum mass of log[M_min/M_sun ]= 11.5^+0.7_-0.2 at 350 microns. This minimum dark matter halo mass corresponds to the most efficient mass scale for star formation in the universe, and is lower than that predicted by semi-analytical models for galaxy formation.
Dark matter halos of sub-solar mass are the first bound objects to form in cold dark matter theories. In this article, I discuss the present understanding of microhalos, their role in structure formation, and the implications of their potential prese
A cosmological zoom-in simulation which develops into a Milky Way-like halo is started at redshift 7. The initial dark matter distribution is seeded with dense star clusters, median mass $5times 10^5 M_sun$, placed in the largest sub-halos present, w
The energy and momentum deposited by the radiation from accretion onto the supermassive black holes (BHs) that reside at the centres of virtually all galaxies can halt or even reverse gas inflow, providing a natural mechanism for supermassive BHs to
The distribution of primordial dark-matter velocities can significantly influence the growth of cosmological structure. In principle, one can therefore exploit the halo-mass distribution in order to learn about the dark sector. In practice, however,
Using high resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < M_V < -8) satellite galaxies. These simulations res