ترغب بنشر مسار تعليمي؟ اضغط هنا

Lasing without Inversion in Circuit Quantum Electrodynamics

112   0   0.0 ( 0 )
 نشر من قبل Michael Marthaler
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the photon generation in a transmission line oscillator coupled to a driven qubit in the presence of a dissipative electromagnetic environment. It has been demonstrated previously that a population inversion in the qubit may lead to a lasing state of the oscillator. Here we show that the circuit can also exhibit the effect of lasing without inversion. This is possible since the coupling to the dissipative environment enhances photon emission as compared to absorption, similar to the recoil effect which was predicted for atomic systems. While the recoil effect is very weak, and so far elusive, the effect described here should be observable with present circuits. We analyze the requirements for the system parameters and environment.



قيم البحث

اقرأ أيضاً

Experimental quantum information processing with superconducting circuits is rapidly advancing, driven by innovation in two classes of devices, one involving planar micro-fabricated (2D) resonators, and the other involving machined three-dimensional (3D) cavities. We demonstrate that circuit quantum electrodynamics can be implemented in a multilayer superconducting structure that combines 2D and 3D advantages. We employ standard micro-fabrication techniques to pattern each layer, and rely on a vacuum gap between the layers to store the electromagnetic energy. Planar qubits are lithographically defined as an aperture in a conducting boundary of the resonators. We demonstrate the aperture concept by implementing an integrated, two cavity-modes, one transmon-qubit system.
The introduction of crystalline defects or dopants can give rise to so-called dirty superconductors, characterized by reduced coherence length and quasiparticle mean free path. In particular, granular superconductors such as Granular Aluminum (GrAl), consisting of remarkably uniform grains connected by Josephson contacts have attracted interest since the sixties thanks to their rich phase diagram and practical advantages, like increased critical temperature, critical field, and kinetic inductance. Here we report the measurement and modeling of circuit quantum electrodynamics properties of GrAl microwave resonators in a wide frequency range, up to the spectral superconducting gap. Interestingly, we observe self-Kerr coefficients ranging from $10^{-2}$ Hz to $10^5$ Hz, within an order of magnitude from analytic calculations based on GrAl microstructure. This amenable nonlinearity, combined with the relatively high quality factors in the $10^5$ range, open new avenues for applications in quantum information processing and kinetic inductance detectors.
In standard lasers, light amplification requires population inversion between an upper and a lower state to break the reciprocity between absorption and stimulated emission. However, in a medium prepared in a specific superposition state, quantum int erference may fully suppress absorption while leaving stimulated emission intact, opening the possibility of lasing without inversion. Here we show that lasing without inversion arises naturally during propagation of intense femtosecond laser pulses in air. It is triggered by the combination of molecular ionization and molecular alignment, both unavoidable in intense light fields. The effect could enable inversionless amplification of broadband radiation in many molecular gases, opening unusual opportunities for remote sensing.
We study a model which can describe a superconducting single electron transistor (SSET) or a double quantum dot coupled to transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which couples strongly to the electromagnetic environment or phonons. We consider the case where a lasing condition is established and study the dependence of the average photon number in the resonator on the spectral function of the electromagnetic environment. We focus on three important cases: a strongly coupled environment with a small cut-off frequency, a structured environment peaked at a specific frequency and 1/f-noise. We find that the electromagnetic environment can have a substantial impact on the photon creation. Resonance peaks are in general broadened and additional resonances can appear.
238 - M. Goppl , A. Fragner , M. Baur 2008
We have designed and fabricated superconducting coplanar waveguide resonators with fundamental frequencies from 2 to $9 rm{GHz}$ and loaded quality factors ranging from a few hundreds to a several hundred thousands reached at temperatures of $20 rm{m K}$. The loaded quality factors are controlled by appropriately designed input and output coupling capacitors. The measured transmission spectra are analyzed using both a lumped element model and a distributed element transmission matrix method. The experimentally determined resonance frequencies, quality factors and insertion losses are fully and consistently characterized by the two models for all measured devices. Such resonators find prominent applications in quantum optics and quantum information processing with superconducting electronic circuits and in single photon detectors and parametric amplifiers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا