ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical optimization of spherical VLS grating X-ray spectrometers

254   0   0.0 ( 0 )
 نشر من قبل Vladimir Strocov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Operation of an X-ray spectrometer based on a spherical variable line spacing grating is analyzed using dedicated ray-tracing software allowing fast optimization of the grating parameters and spectrometer geometry. The analysis is illustrated with optical design of a model spectrometer to deliver a resolving power above 20400 at photon energy of 930 eV (Cu L-edge). With this energy taken as reference, the VLS coefficients are optimized to cancel the lineshape asymmetry (mostly from the coma aberrations) as well as minimize the symmetric aberration broadening at large grating illuminations, dramatically increasing the aberration-limited vertical acceptance of the spectrometer. For any energy away from the reference, we evaluate corrections to the entrance arm and light incidence angle on the grating to maintain the exactly symmetric lineshape. Furthermore, we evaluate operational modes when these corrections are coordinated to maintain either energy independent focal curve inclination or maximal aberration-limited spectrometer acceptance. The results are supported by analytical evaluation of the coma term of the optical path function. Our analysis gives thus a recipe to design a high-resolution spherical VLS grating spectrometer operating with negligible aberrations at large acceptance and over extended energy range.



قيم البحث

اقرأ أيضاً

100 - Shenghao Wang , Can Zhang 2017
We reported the usage of grating-based X-ray phase-contrast imaging in nondestructive testing of grating imperfections. It was found that electroplating flaws could be easily detected by conventional absorption signal, and in particular, we observed that the grating defects resulting from uneven ultraviolet exposure could be clearly discriminated with phase-contrast signal. The experimental results demonstrate that grating-based X-ray phase-contrast imaging, with a conventional low-brilliance X-ray source, a large field of view and a reasonable compact setup, which simultaneously yields phase- and attenuation-contrast signal of the sample, can be ready-to-use in fast nondestructive testing of various imperfections in gratings and other similar photoetching products.
We use narrow spectral lines from the x-ray spectra of various highlycharged ions to measure low-energy tail-like deviations from a Gaussian responsefunction in a microcalorimter x-ray spectrometer with Au absorbers at energiesfrom 650 eV to 3320 eV. We review the literature on low energy tails in othermicrocalorimter x-ray spectrometers and present a model that explains all thereviewed tail fraction measurements. In this model a low energy tail arises fromthe combination of electron escape and energy trapping associated with Bi x-rayabsorbers.
Following the recent developement of Fourier ptychographic microscopy (FPM) in the visible range by Zheng et al. (2013), we propose an adaptation for hard x-rays. FPM employs ptychographic reconstruction to merge a series of low-resolution, wide fiel d of view images into a high-resolution image. In the x-ray range this opens the possibility to overcome the limited numerical aperture of existing x-ray lenses. Furthermore, digital wave front correction (DWC) may be used to charaterize and correct lens imperfections. Given the diffraction limit achievable with x-ray lenses (below 100 nm), x-ray Fourier ptychographic microscopy (XFPM) should be able to reach resolutions in the 10 nm range.
173 - D. Beck , K. Blaum , G. Bollen 2008
Significant systematic errors in high-precision Penning trap mass spectrometry can result from electric and magnetic field imperfections. An experimental procedure to minimize these uncertainties is presented for the on-line Penning trap mass spectro meter ISOLTRAP, located at ISOLDE/CERN. The deviations from the ideal magnetic and electric fields are probed by measuring the cyclotron frequency and the reduced cyclotron frequency, respectively, of stored ions as a function of the time between the ejection of ions from the preparation trap and their capture in the precision trap, which influences the energy of their axial motion. The correction parameters are adjusted to minimize the frequency shifts.
We present a gradient-based algorithm to design general 1D grating couplers without any human input from start to finish, including a choice of initial condition. We show that we can reliably design efficient couplers to have multiple functionalities in different geometries, including conventional couplers for single-polarization and single-wavelength operation, polarization-insensitive couplers, and wavelength-demultiplexing couplers. In particular, we design a fiber-to-chip blazed grating with under 0.2 dB insertion loss that requires a single etch to fabricate and no back-reflector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا