ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully-automated optimization of grating couplers

80   0   0.0 ( 0 )
 نشر من قبل Logan Su
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a gradient-based algorithm to design general 1D grating couplers without any human input from start to finish, including a choice of initial condition. We show that we can reliably design efficient couplers to have multiple functionalities in different geometries, including conventional couplers for single-polarization and single-wavelength operation, polarization-insensitive couplers, and wavelength-demultiplexing couplers. In particular, we design a fiber-to-chip blazed grating with under 0.2 dB insertion loss that requires a single etch to fabricate and no back-reflector.



قيم البحث

اقرأ أيضاً

We present a gradient-based optimization strategy to design broadband grating couplers. Using this method, we are able to reach, and often surpass, a user-specified target bandwidth during optimization. The designs produced for 220 nm silicon-on-insu lator are capable of achieving 3 dB bandwidths exceeding 100 nm while maintaining central coupling efficiencies ranging from -3.0 dB to -5.4 dB, depending on partial-etch fraction. We fabricate a subset of these structures and experimentally demonstrate gratings with 3 dB bandwidths exceeding 120 nm. This inverse design approach provides a flexible design paradigm, allowing for the creation of broadband grating couplers without requiring constraints on grating geometry.
Operation of an X-ray spectrometer based on a spherical variable line spacing grating is analyzed using dedicated ray-tracing software allowing fast optimization of the grating parameters and spectrometer geometry. The analysis is illustrated with op tical design of a model spectrometer to deliver a resolving power above 20400 at photon energy of 930 eV (Cu L-edge). With this energy taken as reference, the VLS coefficients are optimized to cancel the lineshape asymmetry (mostly from the coma aberrations) as well as minimize the symmetric aberration broadening at large grating illuminations, dramatically increasing the aberration-limited vertical acceptance of the spectrometer. For any energy away from the reference, we evaluate corrections to the entrance arm and light incidence angle on the grating to maintain the exactly symmetric lineshape. Furthermore, we evaluate operational modes when these corrections are coordinated to maintain either energy independent focal curve inclination or maximal aberration-limited spectrometer acceptance. The results are supported by analytical evaluation of the coma term of the optical path function. Our analysis gives thus a recipe to design a high-resolution spherical VLS grating spectrometer operating with negligible aberrations at large acceptance and over extended energy range.
237 - Nathan Dostart 2020
Optical phased arrays (OPAs) which beam-steer in 2D have so far been unable to pack emitting elements at $lambda/2$ spacing, leading to grating lobes which limit the field-of-view, introduce signal ambiguity, and reduce optical efficiency. Vernier sc hemes, which use paired transmitter and receiver phased arrays with different periodicity, deliberately misalign the transmission and receive patterns so that only a single pairing of transmit/receive lobes permit a signal to be detected. A pair of OPAs designed to exploit this effect thereby effectively suppress the effects of grating lobes and recover the systems field-of-view, avoid potential ambiguities, and reduce excess noise. Here we analytically evaluate Vernier schemes with arbitrary phase control to find optimal configurations, as well as elucidate the manner in which a Vernier scheme can recover the full field-of-view. We present the first experimental implementation of a Vernier scheme and demonstrate grating lobe suppression using a pair of 2D wavelength-steered OPAs. These results present a route forward for addressing the pervasive issue of grating lobes, significantly alleviating the need for dense emitter pitches.
A highly sensitive refractive index sensor based on grating-assisted strip waveguide directional coupler is proposed. The sensor is designed using two coupled asymmetric strip waveguides with a top-loaded grating structure in one of the waveguides. M aximum light couples from one waveguide to the other at the resonance wavelength, and the change in resonance wavelength with the change in refractive index of the medium in the cover region is a measure of the sensitivity. The proposed sensor would be an on-chip device with a high refractive index sensitivity of ~ 104 nm/RIU, and negligible temperature sensitivity (< 1nm/0C). The sensor configuration offers a low propagation loss, thereby enhancing the sensitivity. Variation of the sensitivity with the waveguide parameters of the proposed sensor have been studied to optimize the design.
Recent experiments have shown that spatial dispersion may have a conspicuous impact on the response of plasmonic structures. This suggests that in some cases the Drude model should be replaced by more advanced descriptions that take spatial dispersio n into account, like the hydrodynamic model. Here we show that nonlocality in the metallic response affects surface plasmons propagating at the interface between a metal and a dielectric with high permittivity. As a direct consequence, any nanoparticle with a radius larger than 20 nm can be expected to be sensitive to spatial dispersion whatever its size. The same behavior is expected for a simple metallic grating allowing the excitation of surface plasmons, just as in Woods famous experiments. Importantly, our work suggests that for any plasmonic structure in a high permittivity dielectric, nonlocality should be taken into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا