ترغب بنشر مسار تعليمي؟ اضغط هنا

Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal

281   0   0.0 ( 0 )
 نشر من قبل Hiromichi Ohta
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we demonstrate that water-infiltrated nanoporous glass electrically switches an oxide semiconductor from an insulator to metal. We fabricated the field effect transistor structure on an oxide semiconductor, SrTiO3, using 100%-water-infiltrated nanoporous glass - amorphous 12CaO*7Al2O3 - as the gate insulator. For positive gate voltage, electron accumulation, water electrolysis and electrochemical reduction occur successively on the SrTiO3 surface at room temperature, leading to the formation of a thin (~3 nm) metal layer with an extremely high electron concentration of 10^15-10^16 cm^-2, which exhibits exotic thermoelectric behaviour.



قيم البحث

اقرأ أيضاً

Landau Fermi liquid theory, with its pivotal assertion that electrons in metals can be simply understood as independent particles with effective masses replacing the free electron mass, has been astonishingly successful. This is true despite the Coul omb interactions an electron experiences from the host crystal lattice, its defects, and the other ~1022/cm3 electrons. An important extension to the theory accounts for the behaviour of doped semiconductors1,2. Because little in the vast literature on materials contradicts Fermi liquid theory and its extensions, exceptions have attracted great attention, and they include the high temperature superconductors3, silicon-based field effect transistors which host two-dimensional metals4, and certain rare earth compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid behaviour in all of these systems remains controversial. Here we report that an entirely different and exceedingly simple class of materials - doped small gap semiconductors near a metal-insulator transition - can also display a non-Fermi liquid state. Remarkably, a modest magnetic field functions as a switch which restores the ordinary disordered Fermi liquid. Our data suggest that we have finally found a physical realization of the only mathematically rigourous route to a non-Fermi liquid, namely the undercompensated Kondo effect, where there are too few mobile electrons to compensate for the spins of unpaired electrons localized on impurity atoms9-12.
Very recently, a new type of two-dimensional layered material MoSi2N4 has been fabricated, which is semiconducting with weak interlayer interaction, high strength, and excellent stability. We systematically investigate theoretically the effect of ver tical strain on the electronic structure of MA2Z4 (M=Ti/Cr/Mo, A=Si, Z=N/P) bilayers. Taking bilayer MoSi2N4 as an example, our first principle calculations show that its indirect band gap decreases monotonically as the vertical compressive strain increases. Under a critical strain around 22%, it undergoes a transition from semiconductor to metal. We attribute this to the opposite energy shift of states in different layers, which originates from the built-in electric field induced by the asymmetric charge transfer between two inner sublayers near the interface. Similar semiconductor to metal transitions are observed in other strained MA2Z4 bilayers, and the estimated critical pressures to realize such transitions are within the same order as semiconducting transition metal dichalcogenides. The semiconductor to metal transitions observed in the family of MA2Z4 bilayers present interesting possibilities for strain-induced engineering of their electronic properties.
311 - M. Nardone , V. G. Karpov 2011
We show that strong enough electric fields can trigger nucleation of needle-shaped metallic embryos in insulators, even when the metal phase is energetically unfavorable without the field. This general phenomenon is due to the gigantic induced dipole moments acquired by the embryos which cause sufficient electrostatic energy gain. Nucleation kinetics are exponentially accelerated by the field-induced suppression of nucleation barriers. Our theory opens the venue of field driven material synthesis. In particular, we briefly discuss synthesis of metallic hydrogen at standard pressure.
124 - Y.Endoh , H.Nojiri , K.Kaneko 1998
The gigantic reduction of the electric resistivity under the applied magnetic field, CMR effect, is now widely accepted to appear in the vicinity of the insulator to metal transition of the perovskite manganites. Recently, we have discovered the firs t order transition from ferromagnetic metal to insulator in $rm La_{0.88}Sr_{0.12}MnO_3$ of the CMR manganite. This phase transition induces the tremendous increase of the resistivity under the external magnetic field just near above the phase transition temperature. We report here fairly detailed results from the systematic experiments including neutron and synchrotron X-ray scattering studies.
By direct magnetization measurements, performed employing a new detection scheme, we demonstrate an electrical control of magnetization in wurtzite (Ga,Mn)N. In this dilute magnetic insulator the Fermi energy is pinned by Mn ions in the mid-gap regio n, and the Mn3+ ions show strong single-ion anisotropy. We establish that (Ga,Mn)N sustains an electric field up to at least 5 MV/cm, indicating that Mn doping turns GaN into a worthwhile semi-insulating material. Under these conditions, the magnetoelectric coupling may be driven by the inverse piezoelectric effect that stretches the elementary cell along the c axis and, thus, affects the magnitude of magnetic anisotropy. We develop a corresponding theory and show that it describes the experimentally determined dependence of magnetization on the electric field quantitatively with no adjustable parameters as a function of the magnetic field and temperature. In this way, our work bridges two research domains developed so far independently: piezoelectricity of wurtzite semiconductors and electrical control of magnetization in hybrid and composite magnetic structures containing piezoelectric components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا