ترغب بنشر مسار تعليمي؟ اضغط هنا

Stretching magnetism with an electric field in a nitride semiconductor

150   0   0.0 ( 0 )
 نشر من قبل Tomasz Dietl
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By direct magnetization measurements, performed employing a new detection scheme, we demonstrate an electrical control of magnetization in wurtzite (Ga,Mn)N. In this dilute magnetic insulator the Fermi energy is pinned by Mn ions in the mid-gap region, and the Mn3+ ions show strong single-ion anisotropy. We establish that (Ga,Mn)N sustains an electric field up to at least 5 MV/cm, indicating that Mn doping turns GaN into a worthwhile semi-insulating material. Under these conditions, the magnetoelectric coupling may be driven by the inverse piezoelectric effect that stretches the elementary cell along the c axis and, thus, affects the magnitude of magnetic anisotropy. We develop a corresponding theory and show that it describes the experimentally determined dependence of magnetization on the electric field quantitatively with no adjustable parameters as a function of the magnetic field and temperature. In this way, our work bridges two research domains developed so far independently: piezoelectricity of wurtzite semiconductors and electrical control of magnetization in hybrid and composite magnetic structures containing piezoelectric components.



قيم البحث

اقرأ أيضاً

86 - G. Cassabois , P. Valvin , B. Gil 2015
Hexagonal boron nitride is a wide bandgap semiconductor with a very high thermal and chemical stability often used in devices operating under extreme conditions. The growth of high-purity crystals has recently revealed the potential of this material for deep ultraviolet emission, with an intense emission around 215 nm. In the last few years, hexagonal boron nitride has been raising even more attention with the emergence of two-dimensional atomic crystals and Van der Waals heterostructures, initiated with the discovery of graphene. Despite this growing interest and a seemingly simple structure, the basic questions of the bandgap nature and value are still controversial. Here, we resolve this long-debated issue by bringing the evidence for an indirect bandgap at 5.955 eV by means of optical spectroscopy. We demonstrate the existence of phonon-assisted optical transitions, and we measure an exciton binding energy of about 130 meV by two-photon spectroscopy.
76 - Z. G. Yu , M. E. Flatte 2002
In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin polarization in the semiconductor s by consistently taking into account electric-field effects and nondegenerate electron statistics and identified a high-field diffusive regime which has no analogue in metals. Here spin injection from a ferromagnet (FM) into a nonmagnetic semiconductor (NS) is extensively studied by applying this spin drift-diffusion equation to several typical injection structures such as FM/NS, FM/NS/FM, and FM/NS/NS structures. We find that in the high-field regime spin injection from a ferromagnet into a semiconductor is enhanced by several orders of magnitude. For injection structures with interfacial barriers, the electric field further enhances spin injection considerably. In FM/NS/FM structures high electric fields destroy the symmetry between the two magnets at low fields, where both magnets are equally important for spin injection, and spin injection becomes locally determined by the magnet from which carriers flow into the semiconductor. The field-induced spin injection enhancement should also be insensitive to the presence of a highly doped nonmagnetic semiconductor (NS$^+$) at the FM interface, thus FM/NS$^+$/NS structures should also manifest efficient spin injection at high fields. Furthermore, high fields substantially reduce the magnetoresistance observable in a recent experiment on spin injection from magnetic semiconductors.
219 - Do Le Binh , B.J. Ruck , F. Natali 2013
Europium nitride is semiconducting and contains non-magnetic 3+, but sub-stoichiometric EuN has Eu in a mix of 2+ and 3+ charge states. We show that at 2+ ~concentrations near 15-20% EuN is ferromagnetic with a Curie temperature as high as 120 K. The 3+ ~polarization follows that of the 2+, confirming that the ferromagnetism is intrinsic to the EuN which is thus a novel diluted magnetic semiconductor. Transport measurements shed light on the likely exchange mechanisms.
In this work we show the presence of a magnetoelectric coupling in silicon-nitride gated Pt/Co/Pt heterostructures using X-ray photoemission electron microscopy (XPEEM). We observe a change in magnetic anisotropy in the form of domain wall nucleation and a change in the rate of domain wall fluctuation as a function of the applied electric field to the sample. We also observe the coexistence of in-plane and out of plane magnetization in Pt/Co/Pt heterostructures in a region around the spin reorientation transition whose formation is attributed to substrate surface roughness comparable to the film thickness; with such domain configuration, we find that the in-plane magnetization is more sensitive to the applied electric field than out of plane magnetization. Although we find an effective magnetoelectric coupling in our system, the presence of charge defects in the silicon nitride membranes hampers a systematic electrostatic control of the magnetization.
292 - Wei Xu , Jin Shang , Jie-Xiang Yu 2018
Based on first principles calculations, this study reveals that magnetism in otherwise non-magnetic materials can originate from the partial occupation of antibonding states. Since the antibonding wavefunctions are spatially antisymmetric, the spin w avefunctions should be symmteric according to the exchange antisymmetric principle of quantum mechanics. We demonstrate that this phenomenon can be observed in a graphitic carbon nitride material, $g$-C$_4$N$_3$, which can be experimentally synthesized and seen as a honeycomb structure with a vacancy. Three dangling bonds of N atoms pointing to the vacancy site interact with each other to form one bonding and two antibonding states. As the two antibonding states are near the Fermi level, and electrons should partially occupy the antibonding states in spin polarization, this leads to 1~$mu_B$ magnetic moment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا