ﻻ يوجد ملخص باللغة العربية
By direct magnetization measurements, performed employing a new detection scheme, we demonstrate an electrical control of magnetization in wurtzite (Ga,Mn)N. In this dilute magnetic insulator the Fermi energy is pinned by Mn ions in the mid-gap region, and the Mn3+ ions show strong single-ion anisotropy. We establish that (Ga,Mn)N sustains an electric field up to at least 5 MV/cm, indicating that Mn doping turns GaN into a worthwhile semi-insulating material. Under these conditions, the magnetoelectric coupling may be driven by the inverse piezoelectric effect that stretches the elementary cell along the c axis and, thus, affects the magnitude of magnetic anisotropy. We develop a corresponding theory and show that it describes the experimentally determined dependence of magnetization on the electric field quantitatively with no adjustable parameters as a function of the magnetic field and temperature. In this way, our work bridges two research domains developed so far independently: piezoelectricity of wurtzite semiconductors and electrical control of magnetization in hybrid and composite magnetic structures containing piezoelectric components.
Hexagonal boron nitride is a wide bandgap semiconductor with a very high thermal and chemical stability often used in devices operating under extreme conditions. The growth of high-purity crystals has recently revealed the potential of this material
In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin polarization in the semiconductor
Europium nitride is semiconducting and contains non-magnetic 3+, but sub-stoichiometric EuN has Eu in a mix of 2+ and 3+ charge states. We show that at 2+ ~concentrations near 15-20% EuN is ferromagnetic with a Curie temperature as high as 120 K. The
In this work we show the presence of a magnetoelectric coupling in silicon-nitride gated Pt/Co/Pt heterostructures using X-ray photoemission electron microscopy (XPEEM). We observe a change in magnetic anisotropy in the form of domain wall nucleation
Based on first principles calculations, this study reveals that magnetism in otherwise non-magnetic materials can originate from the partial occupation of antibonding states. Since the antibonding wavefunctions are spatially antisymmetric, the spin w