ترغب بنشر مسار تعليمي؟ اضغط هنا

The RMS Charge Radius of the Proton and Zemach Moments

368   0   0.0 ( 0 )
 نشر من قبل Michael Otto Distler
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

On the basis of recent precise measurements of the electric form factor of the proton, the Zemach moments, needed as input parameters for the determination of the proton rms radius from the measurement of the Lamb shift in muonic hydrogen, are calculated. It turns out that the new moments give an uncertainty as large as the presently stated error of the recent Lamb shift measurement of Pohl et al.. De Rujulas idea of a large Zemach moment in order to reconcile the five standard deviation discrepancy between the muonic Lamb shift determination and the result of electronic experiments is shown to be in clear contradiction with experiment. Alternative explanations are touched upon.



قيم البحث

اقرأ أيضاً

It is suggested that proton elastic scattering on atomic electrons allows a precise measurement of the proton charge radius. Very small values of transferred momenta (up to four order of magnitude smaller than the ones presently available) can be reached with high probability.
114 - A.A. Filin , V. Baru , E. Epelbaum 2019
We present a high-accuracy calculation of the deuteron structure radius in chiral effective field theory. Our analysis employs the state-of-the-art semilocal two-nucleon potentials and takes into account two-body contributions to the charge density o perators up to fifth order in the chiral expansion. The strength of the fifth-order short-range two-body contribution to the charge density operator is adjusted to the experimental data on the deuteron charge form factor. A detailed error analysis is performed by propagating the statistical uncertainties of the low-energy constants entering the two-nucleon potentials and by estimating errors from the truncation of the chiral expansion as well as from uncertainties in the nucleon form factors. Using the predicted value for the deuteron structure radius together with the very accurate atomic data for the difference of the deuteron and proton charge radii we, for the first time, extract the charge radius of the neutron from light nuclei. The extracted value reads $r_n^2 = - 0.106 substack{ +0.007 -0.005} , text{fm}^2$ and its magnitude is about $1.7sigma$ smaller than the current value given by the Particle Data Group. In addition, given the high accuracy of the calculated deuteron charge form factor and its careful and systematic error analysis, our results open the way for an accurate determination of the nucleon form factors from elastic electron-deuteron scattering data measured at the Mainz Microtron and other experimental facilities.
We present benchmark calculations of Zemach moments and radii of 2,3H and 3,4He using various few-body methods. Zemach moments are required to interpret muonic atom data measured by the CREMA collaboration at the Paul Scherrer Institute. Conversely, radii extracted from spectroscopic measurements can be compared with ab initio computations, posing stringent constraints on the nuclear model. For a given few-body method, different numerical procedures can be applied to compute these quantities. A detailed analysis of the numerical uncertainties entering the total theoretical error is presented. Uncertainties from the few-body method and the calculational procedure are found to be smaller than the dependencies on the dynamical modeling and the single nucleon inputs, which are found to be <= 2%. When relativistic corrections and two-body currents are accounted for, the calculated moments and radii are in very good agreement with the available experimental data.
155 - Yonghui Lin , Bingsong Zou 2019
Up to now, all charge radius measurements of the proton and deuteron assumed uniform spheroidal charge distribution. We investigate the nuclear deformation effects on these charge radius measurements by assuming a uniform prolate charge distribution for the proton and deuteron. We solve the energy levels of the corresponding muonic and electric atoms with such deformed nucleus and present how the purely quadruple deformation of proton and deuteron affects their Lamb shifts. The numerical results suggest that the deformation of proton and deuteron leads to that the charge radius extracted from the electronic measurement should be smaller than the corresponding one in the muonic measurement which assumed uniform spheroidal charge distribution. If the central values of newest measurements for the proton are adopted, the proton would have a prolate structure with the 0.91 $mathrm{fm}$ long axis and 0.73 $mathrm{fm}$ short axis. Further improved precise charge radius measurements of the proton and deuteron will help us to pin down their shape deformation.
124 - B.H. Sun , Y. Lu , J.P. Peng 2014
We show that the charge radii of neighboring atomic nuclei, independent of atomic number and charge, follow remarkably very simple relations, despite the fact that atomic nuclei are complex finite many-body systems governed by the laws of quantum mec hanics. These relations can be understood within the picture of independent-particle motion and by assuming neighboring nuclei having similar pattern in the charge density distribution. A root-mean-square (rms) deviation of 0.0078 fm is obtained between the predictions in these relations and the experimental values, i.e., a comparable precision as modern experimental techniques. Such high accuracy relations are very useful to check the consistence of nuclear charge radius surface and moreover to predict unknown nuclear charge radii, while large deviations from experimental data is seen to reveal the appearance of nuclear shape transition or coexsitence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا