ﻻ يوجد ملخص باللغة العربية
It is shown that attempts to accurately deduce the magnetic penetration depth of overdoped BaFe_{1.82}Co_{0.18}As2 single crystals by transverse-field muon spin rotation (TF-muSR) are thwarted by field-induced magnetic order and strong vortex-lattice disorder. We explain how substantial deviations from the magnetic field distribution of a nearly perfect vortex lattice by one or both of these factors is also significant for other iron-based superconductors, and this introduces considerable uncertainty in the values of the magnetic penetration depth obtained by TF-muSR.
We study the effect of disorder on the London penetration depth in iron-based superconductors. The theory is based on a two-band model with quasi-two-dimensional Fermi surfaces, which allows for the coexistence region in the phase diagram between mag
In- and out-of-plane magnetic penetration depths were measured in three iron-based pnictide superconducting systems. All studied samples of both 122 systems show a robust power-law behavior, $lambda (T) T^n$, with the sample-dependent exponent n=2-2.
We report high-sensitivity microwave measurements of the in-plane penetration depth $lambda_{ab}$ and quasiparticle scattering rate $1/tau$ in several single crystals of hole-doped Fe-based superconductor Ba$_{1-x}$K$_x$Fe$_2$As$_2$ ($xapprox 0.55$).
We investigate the magnetic penetration depth lambda in superconducting Ba_1-xK_xFe_2As_2 (T_csimeq32K) with muon-spin rotation (muSR) and angle-resolved photoemission (ARPES). Using muSR, we find the penetration-depth anisotropy gamma_lambda=lambda_
We report on measurements of the temperature dependence of the magnetic penetration depth of a very high quality single crystal of nonmagnetic superconductor LaPt3Si without inversion symmetry. The results are compared with those previously reported