ﻻ يوجد ملخص باللغة العربية
We investigate the magnetic penetration depth lambda in superconducting Ba_1-xK_xFe_2As_2 (T_csimeq32K) with muon-spin rotation (muSR) and angle-resolved photoemission (ARPES). Using muSR, we find the penetration-depth anisotropy gamma_lambda=lambda_c/lambda_{ab} and the second-critical-field anisotropy gamma_{H_c2} to show an opposite T-evolution below T_c. This dichotomy resembles the situation in the two-gap superconductor MgB_2. A two-gap scenario is also suggested by an inflection point in the in-plane penetration depth lambda_ab around 7K. The complementarity of muSR and ARPES allows us to pinpoint the values of the two gaps and to arrive to a remarkable agreement between the two techniques concerning the full T-evolution of lambda_ab. This provides further support for the described scenario and establishes ARPES as a tool to assess macroscopic properties of the superconducting condensate.
It is shown that attempts to accurately deduce the magnetic penetration depth of overdoped BaFe_{1.82}Co_{0.18}As2 single crystals by transverse-field muon spin rotation (TF-muSR) are thwarted by field-induced magnetic order and strong vortex-lattice
We report measurements of the temperature dependence of the magnetic penetration depth lambda(T) in non-centrosymmetric superconductor Re_3W. We employed two experimental techniques: extraction of lambda(T) from magnetic {em dc}-susceptibility, measu
The effective superconducting penetration depth measured in the vortex state of PrOs4Sb12 using transverse-field muon spin rotation (TF-muSR) exhibits an activated temperature dependence at low temperatures, consistent with a nonzero gap for quasipar
We report on measurements of the temperature dependence of the magnetic penetration depth of a very high quality single crystal of nonmagnetic superconductor LaPt3Si without inversion symmetry. The results are compared with those previously reported
A study of the pressure effect on the magnetic penetration depth $lambda$ in polycrystalline MgB$_{2}$ was performed by measuring the temperature dependence of the magnetization under an applied pressure of 0.15 and 1.13 GPa. We found that $lambda^{-