ترغب بنشر مسار تعليمي؟ اضغط هنا

Percolation in self-similar networks

150   0   0.0 ( 0 )
 نشر من قبل Marian Boguna
 تاريخ النشر 2010
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.



قيم البحث

اقرأ أيضاً

As a fundamental structural transition in complex networks, core percolation is related to a wide range of important problems. Yet, previous theoretical studies of core percolation have been focusing on the classical ErdH{o}s-Renyi random networks wi th Poisson degree distribution, which are quite unlike many real-world networks with scale-free or fat-tailed degree distributions. Here we show that core percolation can be analytically studied for complex networks with arbitrary degree distributions. We derive the condition for core percolation and find that purely scale-free networks have no core for any degree exponents. We show that for undirected networks if core percolation occurs then it is always continuous while for directed networks it becomes discontinuous when the in- and out-degree distributions are different. We also apply our theory to real-world directed networks and find, surprisingly, that they often have much larger core sizes as compared to random models. These findings would help us better understand the interesting interplay between the structural and dynamical properties of complex networks.
We study spectra of directed networks with inhibitory and excitatory couplings. We investigate in particular eigenvector localization properties of various model networks for different value of correlation among their entries. Spectra of random netwo rks, with completely uncorrelated entries show a circular distribution with delocalized eigenvectors, where as networks with correlated entries have localized eigenvectors. In order to understand the origin of localization we track the spectra as a function of connection probability and directionality. As connections are made directed, eigenstates start occurring in complex conjugate pairs and the eigenvalue distribution combined with the localization measure shows a rich pattern. Moreover, for a very well distinguished community structure, the whole spectrum is localized except few eigenstates at boundary of the circular distribution. As the network deviates from the community structure there is a sudden change in the localization property for a very small value of deformation from the perfect community structure. We search for this effect for the whole range of correlation strengths and for different community configurations. Furthermore, we investigate spectral properties of a metabolic network of zebrafish, and compare them with those of the model networks.
We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e ., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.
We study the scaling properties of the solid-on-solid front of the infinite cluster in two-dimensional gradient percolation. We show that such an object is self affine with a Hurst exponent equal to 2/3 up to a cutoff-length proportional to the gradi ent to the power (-4/7). Beyond this length scale, the front position has the character of uncorrelated noise. Importantly, the self-affine behavior is robust even after removing local jumps of the front. The previously observed multi affinity, is due to the dominance of overhangs at small distances in the structure function. This is a crossover effect.
Complex networks characterized by global transport processes rely on the presence of directed paths from input to output nodes and edges, which organize in characteristic linked components. The analysis of such network-spanning structures in the fram ework of percolation theory, and in particular the key role of edge interfaces bridging the communication between core and periphery, allow us to shed light on the structural properties of real and theoretical flow networks, and to define criteria and quantities to characterize their efficiency at the interplay between structure and functionality. In particular, it is possible to assess that an optimal flow network should look like a hairy ball, so to minimize bottleneck effects and the sensitivity to failures. Moreover, the thorough analysis of two real networks, the Internet customer-provider set of relationships at the autonomous system level and the nervous system of the worm Caenorhabditis elegans --that have been shaped by very different dynamics and in very different time-scales--, reveals that whereas biological evolution has selected a structure close to the optimal layout, market competition does not necessarily tend toward the most customer efficient architecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا