ﻻ يوجد ملخص باللغة العربية
The reduced-density-matrix method is an promising candidate for the next generation electronic structure calculation method; it is equivalent to solve the Schrodinger equation for the ground state. The number of variables is the same as a four electron system and constant regardless of the electrons in the system. Thus many researchers have been dreaming of a much simpler method for quantum mechanics. In this chapter, we give a overview of the reduced-density matrix method; details of the theories, methods, history, and some new computational results. Typically, the results are comparable to the CCSD(T) which is a sophisticated traditional approach in quantum chemistry.
The second-order reduced density matrix method (the RDM method) has performed well in determining energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles with perturbative triples (CC SD(T)) accuracy wit
Variational calculation of the ground state energy and its properties using the second-order reduced density matrix (2-RDM) is a promising approach for quantum chemistry. A major obstacle with this approach is that the $N$-representability conditions
By combining a parameterized Hermitian matrix, the realignment matrix of the bipartite density matrix $rho$ and the vectorization of its reduced density matrices, we present a family of separability criteria, which are stronger than the computable cr
We present a method for the calculation of photoemission spectra in terms of reduced density matrices. We start from the spectral representation of the one-body Greens function G, whose imaginary part is related to photoemission spectra, and we intro
Recently, an adaptive variational algorithm termed Adaptive Derivative-Assembled Pseudo-Trotter ansatz Variational Quantum Eigensolver (ADAPT-VQE) has been proposed by Grimsley et al. (Nat. Commun. 10, 3007) while the number of measurements required