ترغب بنشر مسار تعليمي؟ اضغط هنا

HAT-P-26b: A Low-Density Neptune-Mass Planet Transiting a K Star

143   0   0.0 ( 0 )
 نشر من قبل Joel Hartman
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of HAT-P-26b, a transiting extrasolar planet orbiting the moderately bright V=11.744 K1 dwarf star GSC 0320-01027, with a period P = 4.234516 +- 0.000015 d, transit epoch Tc = 2455304.65122 +- 0.00035 (BJD), and transit duration 0.1023 +- 0.0010 d. The host star has a mass of 0.82 +- 0.03 Msun, radius of 0.79 + 0.10 - 0.04 Rsun, effective temperature 5079 +- 88 K, and metallicity [Fe/H] = -0.04 +- 0.08. The planetary companion has a mass of 0.059 +- 0.007 MJ, and radius of 0.565 + 0.072 - 0.032 RJ yielding a mean density of 0.40 +- 0.10 g cm-3. HAT-P-26b is the fourth Neptune-mass transiting planet discovered to date. It has a mass that is comparable to those of Neptune and Uranus, and slightly smaller than those of the other transiting Super-Neptunes, but a radius that is ~65% larger than those of Neptune and Uranus, and also larger than those of the other transiting Super-Neptunes. HAT-P-26b is consistent with theoretical models of an irradiated Neptune-mass planet with a 10 Mearth heavy element core that comprises >~ 50% of its mass with the remainder contained in a significant hydrogen-helium envelope, though the exact composition is uncertain as there are significant differences between various theoretical models at the Neptune-mass regime. The equatorial declination of the star makes it easily accessible to both Northern and Southern ground-based facilities for follow-up observations.



قيم البحث

اقرأ أيضاً

We investigate possible pathways for the formation of the low density Neptune-mass planet HAT-P-26b. We use two formation different models based on pebbles and planetesimals accretion, and includes gas accretion, disk migration and simple photoevapor ation. The models tracks the atmospheric oxygen abundance, in addition to the orbital period, and mass of the forming planets, that we compare to HAT-P-26b. We find that pebbles accretion can explain this planet more naturally than planetesimals accretion that fails completely unless we artificially enhance the disk metallicity significantly. Pebble accretion models can reproduce HAT-P-26b with either a high initial core mass and low amount of envelope enrichment through core erosion or pebbles dissolution, or the opposite, with both scenarios being possible. Assuming a low envelope enrichment factor as expected from convection theory and comparable to the values we can infer from the D/H measurements in Uranus and Neptune, our most probable formation pathway for HAT-P-26b is through pebble accretion starting around 10 AU early in the disks lifetime.
167 - J. D. Hartman 2009
We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V=12.8 K4 dwarf GSC 03033-00706, with a period P = 3.2130598 +- 0.0000021 d, transit epoch Tc = 2454419.19556 +- 0.00020 (BJD) and transit duration 0.0974 +- 0.0006 d. The host star has a mass of 0.73 +- 0.02 Msun, radius of 0.70 +- ^0.02_0.01 Rsun, effective temperature 4650 +- 60 K and metallicity [Fe/H] = -0.29 +- 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 +- 0.012 MJup, and a radius of 0.959 +- ^0.029_0.021 RJup yielding a mean density of 0.295 +- 0.025 g cm^-3. Comparing these observations with recent theoretical models we find that HAT-P-12b is consistent with a ~ 1-4.5 Gyr, mildly irradiated, H/He dominated planet with a core mass Mc <~ 10 Mearth. HAT-P-12b is thus the least massive H/He dominated gas giant planet found to date. This record was previously held by Saturn.
125 - G. A. Bakos 2009
We report on the discovery of HAT-P-11b, the smallest radius transiting extrasolar planet (TEP) discovered from the ground, and the first hot Neptune discovered to date by transit searches. HAT-P-11b orbits the bright (V=9.587) and metal rich ([Fe=H] = +0.31 +/- 0.05) K4 dwarf star GSC 03561-02092 with P = 4.8878162 +/- 0.0000071 days and produces a transit signal with depth of 4.2 mmag. We present a global analysis of the available photometric and radial-velocity data that result in stellar and planetary parameters, with simultaneous treatment of systematic variations. The planet, like its near-twin GJ 436b, is somewhat larger than Neptune (17Mearth, 3.8Rearth) both in mass Mp = 0.081 +/- 0.009 MJ (25.8 +/- 2.9 Mearth) and radius Rp = 0.422 +/- 0.014 RJ (4.73 +/- 0.16 Rearth). HAT-P-11b orbits in an eccentric orbit with e = 0.198 +/- 0.046 and omega = 355.2 +/- 17.3, causing a reflex motion of its parent star with amplitude 11.6 +/- 1.2 m/s, a challenging detection due to the high level of chromospheric activity of the parent star. Our ephemeris for the transit events is Tc = 2454605.89132 +/- 0.00032 (BJD), with duration 0.0957 +/- 0.0012 d, and secondary eclipse epoch of 2454608.96 +/- 0.15 d (BJD). The basic stellar parameters of the host star are M* = 0.809+0.020-0.027 Msun, R* = 0.752 +/- 0.021 Rsun and Teff = 4780 +/- 50 K. Importantly, HAT-P-11 will lie on one of the detectors of the forthcoming Kepler mission. We discuss an interesting constraint on the eccentricity of the system by the transit light curve and stellar parameters. We also present a blend analysis, that for the first time treats the case of a blended transiting hot Jupiter mimicing a transiting hot Neptune, and proves that HAT-P-11b is not such a blend.
We report the discovery of HAT-P-38b, a Saturn-mass exoplanet transiting the V=12.56 dwarf star GSC 2314-00559 on a P = 4.6404 d circular orbit. The host star is a 0.89Msun late G-dwarf, with solar metallicity, and a radius of 0.92Rsun. The planetary companion has a mass of 0.27MJ, and radius of 0.82RJ. HAT-P-38b is one of the closest planets in mass and radius to Saturn ever discovered.
A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System, and has served as a cornerstone of planet formation theory. Using data from th e Hubble and Spitzer Space Telescopes from 0.5 to 5 microns, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H2O absorption bands with a maximum base-to-peak amplitude of 525ppm in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26bs atmospheric heavy element content [4.8 (-4.0 +21.5) times solar]. This likely indicates that HAT-P-26bs atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا