ﻻ يوجد ملخص باللغة العربية
A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System, and has served as a cornerstone of planet formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 microns, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H2O absorption bands with a maximum base-to-peak amplitude of 525ppm in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26bs atmospheric heavy element content [4.8 (-4.0 +21.5) times solar]. This likely indicates that HAT-P-26bs atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals.
We report the discovery of HAT-P-26b, a transiting extrasolar planet orbiting the moderately bright V=11.744 K1 dwarf star GSC 0320-01027, with a period P = 4.234516 +- 0.000015 d, transit epoch Tc = 2455304.65122 +- 0.00035 (BJD), and transit durati
We investigate possible pathways for the formation of the low density Neptune-mass planet HAT-P-26b. We use two formation different models based on pebbles and planetesimals accretion, and includes gas accretion, disk migration and simple photoevapor
From its discovery, the low density transiting Neptune HAT-P-26b showed a 2.1-sigma detection drift in its spectroscopic data, while photometric data showed a weak curvature in the timing residuals that required further follow-up observations to be c
We report the discovery of HAT-P-14b, a fairly massive transiting extrasolar planet orbiting the moderately bright star GSC 3086-00152 (V = 9.98), with a period of P = 4.627669 +/- 0.000005 days. The transit is close to grazing (impact parameter 0.89
We present the first comprehensive look at the $0.35-5$ $mu$m transmission spectrum of the warm ($sim 800$ K) Neptune HAT-P-11b derived from thirteen individual transits observed using the Hubble and Spitzer Space Telescopes. Along with the previousl