ترغب بنشر مسار تعليمي؟ اضغط هنا

Variations of the amplitudes of oscillation of the Be star Achernar

101   0   0.0 ( 0 )
 نشر من قبل Kym Goss
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on finding variations in amplitude of the two main oscillation frequencies found in the Be star Achernar, over a period of 5 years. They were uncovered by analysing photometric data of the star from the SMEI instrument. The two frequencies observed, 0.775 c/d and 0.725 c/d, were analysed in detail and their amplitudes were found to increase and decrease significantly over the 5-year period, with the amplitude of the 0.725 c/d frequency changing by up to a factor of eight. The nature of this event has yet to be properly understood, but the possibility of it being due to the effects of a stellar outburst or a stellar cycle are discussed.



قيم البحث

اقرأ أيضاً

Be objects are stars of B spectral type showing lines of the Balmer series in emission. The presence of these lines is attributed to the existence of an extended envelope, disk type, around them. Some stars are observed in both the Be and normal B-ty pe spectroscopic states and they are known as transient Be stars. In this paper we show the analysis carried out on a new possible transient Be star, labelled HD 112999, using spectroscopic optical observations and photometric data.
Radial-velocity variations of the H-alpha emission measured on the steep wings of the H-alpha line, prewhitened for the long-time changes, vary periodically with a period of (218.025 +/- 0.022)d, confirming the suspected binary nature of the bright B e star Pleione, a member of the Pleiades cluster. The orbit seems to have a high eccentricity over 0.7, but we also briefly discuss the possibility that the true orbit is circular and that the eccentricity is spurious owing to the phase-dependent effects of the circumstellar matter. The projected angular separation of the spectroscopic orbit is large enough to allow the detection of the binary with large optical interferometers, provided the magnitude difference primary - secondary is not too large. Since our data cover the onset of a new shell phase up to development of a metallic shell spectrum, we also briefly discuss the recent long-term changes. We confirm the formation of a new envelope, coexisting with the previous one, at the onset of the new shell phase. We find that the full width at half maximum of the H-alpha profile has been decreasing with time for both envelopes. In this connection, we briefly discuss Hiratas hypothesis of precessing gaseous disk and possible alternative scenarios of the observed long-term changes.
Aims. In this paper we model, in a self-consistent way, polarimetric, photometric, spectrophotometric and interferometric observations of the classical Be star $zeta$ Tauri. Our primary goal is to conduct a critical quantitative test of the global os cillation scenario. Methods. We have carried out detailed three-dimensional, NLTE radiative transfer calculations using the radiative transfer code HDUST. For the input for the code we have used the most up-to-date research on Be stars to include a physically realistic description for the central star and the circumstellar disc. We adopt a rotationally deformed, gravity darkened central star, surrounded by a disc whose unperturbed state is given by a steady-state viscous decretion disc model. We further assume that disc is in vertical hydrostatic equilibrium. Results. By adopting a viscous decretion disc model for $zeta$ Tauri and a rigorous solution of the radiative transfer, we have obtained a very good fit of the time-average properties of the disc. This provides strong theoretical evidence that the viscous decretion disc model is the mechanism responsible for disc formation. With the global oscillation model we have successfully fitted spatially resolved VLTI/AMBER observations and the temporal V/R variations of the H$alpha$ and Br$gamma$ lines. This result convincingly demonstrates that the oscillation pattern in the disc is a one-armed spiral. Possible model shortcomings, as well as suggestions for future improvements, are also discussed.
Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been b roadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. The photometric data comes from the KELT transit survey, with a typical cadence of 30 minutes, baseline of up to ten years, photometric precision of about 1%, and coverage of about 60% of the sky. We analyze KELT light curves of 610 known Be stars in both the Northern and Southern hemispheres in an effort to study their variability. Consistent with other studies of Be star variability, we find most of the stars to be photometrically variable. We derive lower limits on the fraction of stars in our sample that exhibit features consistent with non-radial pulsations (25%), outbursts (36%), and long term trends in the circumstellar disk (37%), and show how these are correlated with spectral sub-type. Other types of variability, such as those owing to binarity, are also explored. Simultaneous spectroscopy for some of these systems from the Be Star Spectral Database (BeSS) allow us to better understand the physical causes for the observed variability, especially in cases of outbursts and changes in the disk.
We present an analysis of the near-infrared continuum emission from the circumstellar gas disks of Be stars using a radiative transfer code for a parametrized version of the viscous decretion disk model. This isothermal gas model creates predicted im ages that we use to estimate the HWHM emission radius along the major axis of the projected disk and the spatially integrated flux excess at wavelengths of 1.7, 2.1, 4.8, 9, and 18 ?m. We discuss in detail the effect of the disk base density, inclination angle, stellar effective temperature, and other physical parameters on the derived disk sizes and color excesses. We calculate color excess estimates relative to the stellar V -band flux for a sample of 130 Be stars using photometry from 2MASS and the AKARI infrared camera all-sky survey. The color excess relations from our models make a good match of the observed color excesses of Be stars. We also present our results on the projected size of the disk as a function of wavelength for the classical Be star ? Tauri, and we show that the model predictions are consistent with interferometric observations in the H, K, and 12 mu m bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا