ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties and nature of Be stars: 27. Orbital and recent long-term variations of the Pleiades Be star Pleione = BU Tauri

260   0   0.0 ( 0 )
 نشر من قبل Jana Alexandra Nemravov\\'a
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radial-velocity variations of the H-alpha emission measured on the steep wings of the H-alpha line, prewhitened for the long-time changes, vary periodically with a period of (218.025 +/- 0.022)d, confirming the suspected binary nature of the bright Be star Pleione, a member of the Pleiades cluster. The orbit seems to have a high eccentricity over 0.7, but we also briefly discuss the possibility that the true orbit is circular and that the eccentricity is spurious owing to the phase-dependent effects of the circumstellar matter. The projected angular separation of the spectroscopic orbit is large enough to allow the detection of the binary with large optical interferometers, provided the magnitude difference primary - secondary is not too large. Since our data cover the onset of a new shell phase up to development of a metallic shell spectrum, we also briefly discuss the recent long-term changes. We confirm the formation of a new envelope, coexisting with the previous one, at the onset of the new shell phase. We find that the full width at half maximum of the H-alpha profile has been decreasing with time for both envelopes. In this connection, we briefly discuss Hiratas hypothesis of precessing gaseous disk and possible alternative scenarios of the observed long-term changes.



قيم البحث

اقرأ أيضاً

Be objects are stars of B spectral type showing lines of the Balmer series in emission. The presence of these lines is attributed to the existence of an extended envelope, disk type, around them. Some stars are observed in both the Be and normal B-ty pe spectroscopic states and they are known as transient Be stars. In this paper we show the analysis carried out on a new possible transient Be star, labelled HD 112999, using spectroscopic optical observations and photometric data.
Context: The identification of long-gamma-ray-bursts (LGRBs) is still uncertain, although the collapsar engine of fast-rotating massive stars is gaining a strong consensus. Aims: We propose that low-metallicity Be and Oe stars, which are massive fast rotators, as potential LGRBs progenitors. Methods: We checked this hypothesis by 1) testing the global specific angular momentum of Oe/Be stars in the ZAMS with the SMC metallicity, 2) comparing the ZAMS ($Omega/Omega_{rm c},M/M_{odot}$) parameters of these stars with the area predicted theoretically for progenitors with metallicity $Z=0.002$, and 3) calculating the expected rate of LGRBs/year/galaxy and comparing them with the observed ones. To this end, we determined the ZAMS linear and angular rotational velocities for SMC Be and Oe stars using the observed vsini parameters, corrected from the underestimation induced by the gravitational darkening effect. Results: The angular velocities of SMC Oe/Be stars are on average $<Omega/Omega_{rm c}>=0.95$ in the ZAMS. These velocities are in the area theoretically predicted for the LGRBs progenitors. We estimated the yearly rate per galaxy of LGRBs and the number of LGRBs produced in the local Universe up to z=0.2. We have considered that the mass range of LGRB progenitors corresponds to stars hotter than spectral types B0-B1 and used individual beaming angles from 5 to 15degr. We thus obtain $R^{rm pred}_{rm LGRB}sim10^{-7}$ to $sim10^{-6}$ LGRBs/year/galaxy, which represents on average 2 to 14 LGRB predicted events in the local Universe during the past 11 years. The predicted rates could widely surpass the observed ones [(0.2-3)$times10^{-7}$ LGRBs/year/galaxy; 8 LGRBs observed in the local Universe during the last 11 years] if the stellar counts were made from the spectral type B1-B2, in accordance with the expected apparent spectral types of the appropriate massive fast rotators. Conclusion: We conclude that the massive Be/Oe stars with SMC metallicity could be LGRBs progenitors. Nevertheless, other SMC O/B stars without emission lines, which have high enough specific angular momentum, can enhance the predicted $R_{rm LGRB}$ rate.
Reliable determination of the basic physical properties of hot emission-line binaries with Roche-lobe filling secondaries is important for developing the theory of mass exchange in binaries. It is not easy, however, due to the presence of circumstell ar matter. Here, we report the first detailed investigation of a new representative of this class of binaries, HD~81357, based on the analysis of spectra and photometry from several observatories. HD~81357 was found to be a double-lined spectroscopic binary and an ellipsoidal variable seen under an intermediate orbital inclination of $sim(63pm5)^circ$, having an orbital period of 33fd77445(41) and a~circular orbit. From an automated comparison of the observed and synthetic spectra, we estimate the components effective temperatures to be 12930(540)~K and 4260(24)~K. The combined light-curve and orbital solutions, also constrained by a very accurate Gaia Data Release 2 parallax, give the following values of the basic physical properties: masses $3.36pm0.15$ and $0.34pm0.04$~Mnom, radii $3.9pm0.2$ and 13.97pm0.05$~Rnom, and a~mass ratio $10.0pm0.5$. Evolutionary modelling of the system including the phase of mass transfer between the components indicated that HD~81357 is a~system observed in the final slow phase of the mass exchange after the mass-ratio reversal. Contrary to what has been seen for similar binaries like AU~Mon, no cyclic light variations were found on a~time scale an~order of magnitude longer than the orbital period. 243,1 15%
We report on finding variations in amplitude of the two main oscillation frequencies found in the Be star Achernar, over a period of 5 years. They were uncovered by analysing photometric data of the star from the SMEI instrument. The two frequencies observed, 0.775 c/d and 0.725 c/d, were analysed in detail and their amplitudes were found to increase and decrease significantly over the 5-year period, with the amplitude of the 0.725 c/d frequency changing by up to a factor of eight. The nature of this event has yet to be properly understood, but the possibility of it being due to the effects of a stellar outburst or a stellar cycle are discussed.
(Abridged) Classical Be stars occasionally transition from having a gaseous circumstellar disk (Be phase) to a state in which all observational evidence for the presence of these disks disappears (normal B-star phase). We present one of the most comp rehensive spectropolarimetric views to date of such a transition for two Be stars, pi Aquarii and 60 Cygni. 60 Cygs disk loss episode was characterized by a monotonic decrease in emission strength over a time-scale of 1000 days, consistent with the viscous time-scale of the disk, assuming alpha is 0.14. pi Aqrs disk loss was episodic in nature and occurred over a time-scale of 2440 days. An observed time lag between the behavior of the polarization and H-alpha in both stars indicates the disk clearing proceeded in an inside-out manner. We determine the position angle of the intrinsic polarization to be 166.7 +/- 0.1 degrees for pi Aqr and 107.7 +/- 0.4 degrees for 60 Cyg, and model the observed polarization during the quiescent diskless phase of each star to determine the interstellar polarization along the line of sight. Minor outbursts observed during the quiescent phase of each star shared similar lifetimes as those previously reported for mu Cen, suggesting that the outbursts represent the injection and subsequent viscous dissipation of individual blobs of material into the inner circumstellar environments of these stars. We also observe deviations from the mean intrinsic polarization position angle during polarization outbursts in each star, indicating deviations from axisymmetry. We propose that these deviations might be indicative of the injection (and subsequent circularization) of new blobs into the inner disk, either in the plane of the bulk of the disk material or in a slightly inclined (non-coplanar) orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا