ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Computing

116   0   0.0 ( 0 )
 نشر من قبل Thaddeus Ladd
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theorys inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future.



قيم البحث

اقرأ أيضاً

Quantum neuromorphic computing physically implements neural networks in brain-inspired quantum hardware to speed up their computation. In this perspective article, we show that this emerging paradigm could make the best use of the existing and near f uture intermediate size quantum computers. Some approaches are based on parametrized quantum circuits, and use neural network-inspired algorithms to train them. Other approaches, closer to classical neuromorphic computing, take advantage of the physical properties of quantum oscillator assemblies to mimic neurons and compute. We discuss the different implementations of quantum neuromorphic networks with digital and analog circuits, highlight their respective advantages, and review exciting recent experimental results.
The capacity of noisy quantum channels characterizes the highest rate at which information can be reliably transmitted and it is therefore of practical as well as fundamental importance. Capacities of classical channels are computed using alternating optimization schemes, called Blahut-Arimoto algorithms. In this work, we generalize classical Blahut-Arimoto algorithms to the quantum setting. In particular, we give efficient iterative schemes to compute the capacity of channels with classical input and quantum output, the quantum capacity of less noisy channels, the thermodynamic capacity of quantum channels, as well as the entanglement-assisted capacity of quantum channels. We give rigorous a priori and a posteriori bounds on the estimation error by employing quantum entropy inequalities and demonstrate fast convergence of our algorithms in numerical experiments.
There are two schools of measurement-only quantum computation. The first ([11]) using prepared entanglement (cluster states) and the second ([4]) using collections of anyons, which according to how they were produced, also have an entanglement patter n. We abstract the common principle behind both approaches and find the notion of a graph or even continuous family of equiangular projections. This notion is the leading character in the paper. The largest continuous family, in a sense made precise in Corollary 4.2, is associated with the octonions and this example leads to a universal computational scheme. Adiabatic quantum computation also fits into this rubric as a limiting case: nearby projections are nearly equiangular, so as a gapped ground state space is slowly varied the corrections to unitarity are small.
Quantum computers provide a fundamentally new computing paradigm that promises to revolutionize our ability to solve broad classes of problems. Surprisingly, the basic mathematical structures of gate-based quantum computing, such as unitary operation s on a finite-dimensional Hilbert space, are not unique to quantum systems but may be found in certain classical systems as well. Previously, it has been shown that one can represent an arbitrary multi-qubit quantum state in terms of classical analog signals using nested quadrature amplitude modulated signals. Furthermore, using digitally controlled analog electronics one may manipulate these signals to perform quantum gate operations and thereby execute quantum algorithms. The computational capacity of a single signal is, however, limited by the required bandwidth, which scales exponentially with the number of qubits when represented using frequency-based encoding. To overcome this limitation, we introduce a method to extend this approach to multiple parallel signals. Doing so allows a larger quantum state to be emulated with the same gate time required for processing frequency-encoded signals. In the proposed representation, each doubling of the number of signals corresponds to an additional qubit in the spatial domain. Single quit gate operations are similarly extended so as to operate on qubits represented using either frequency-based or spatial encoding schemes. Furthermore, we describe a method to perform gate operations between pairs of qubits represented using frequency or spatial encoding or between frequency-based and spatially encoded qubits. Finally, we describe how this approach may be extended to represent qubits in the time domain as well.
162 - Ronald de Wolf 2019
This is a set of lecture notes suitable for a Masters course on quantum computation and information from the perspective of theoretical computer science. The first version was written in 2011, with many extensions and improvements in subsequent years . The first 10 chapters cover the circuit model and the main quantum algorithms (Deutsch-Jozsa, Simon, Shor, Hidden Subgroup Problem, Grover, quantum walks, Hamiltonian simulation and HHL). They are followed by 3 chapters about complexity, 4 chapters about distributed (Alice and Bob) settings, and a final chapter about quantum error correction. Appendices A and B give a brief introduction to the required linear algebra and some other mathematical and computer science background. All chapters come with exercises, with some hints provided in Appendix C.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا