ﻻ يوجد ملخص باللغة العربية
This is a set of lecture notes suitable for a Masters course on quantum computation and information from the perspective of theoretical computer science. The first version was written in 2011, with many extensions and improvements in subsequent years. The first 10 chapters cover the circuit model and the main quantum algorithms (Deutsch-Jozsa, Simon, Shor, Hidden Subgroup Problem, Grover, quantum walks, Hamiltonian simulation and HHL). They are followed by 3 chapters about complexity, 4 chapters about distributed (Alice and Bob) settings, and a final chapter about quantum error correction. Appendices A and B give a brief introduction to the required linear algebra and some other mathematical and computer science background. All chapters come with exercises, with some hints provided in Appendix C.
This is a self-contained set of lecture notes covering various aspects of the theory of open quantum system, at a level appropriate for a one-semester graduate course. The main emphasis is on completely positive maps and master equations, both Markovian and non-Markovian.
These third-year lecture notes are designed for a 1-semester course in topological quantum field theory (TQFT). Assumed background in mathematics and physics are only standard second-year subjects: multivariable calculus, introduction to quantum mech
These lecture notes provide a basic introduction to the framework of generalized probabilistic theories (GPTs) and a sketch of a reconstruction of quantum theory (QT) from simple operational principles. To build some intuition for how physics could b
Let $A in mathbb{Z}^{m times n}$ be an integral matrix and $a$, $b$, $c in mathbb{Z}$ satisfy $a geq b geq c geq 0$. The question is to recognize whether $A$ is ${a,b,c}$-modular, i.e., whether the set of $n times n$ subdeterminants of $A$ in absolut
This text is an introduction to an operational outlook on Bell inequalities, which has been very fruitful in the past few years. It has lead to the recognition that Bell tests have their own place in applied quantum technologies, because they quantif