ﻻ يوجد ملخص باللغة العربية
Plasma-based accelerators sustain accelerating gradients which are several orders greater than obtained in conventional accelerators. Focusing of electron and positron beams by wakefield, excited in plasma, in electron-positron collider is very important. The focusing mechanism in the plasma, in which all electron bunches of a sequence are focused identically, has been proposed by authors earlier. The mechanism of focusing of a sequence of relativistic positron bunches in plasma, in which all positron bunches of sequence are focused identically and uniformly, has been investigated in this paper by numerical simulation by 2.5D code LCODE. We numerically simulate the self-consistent radial dynamics of lengthy positron bunches in homogeneous plasma. In simulation we use the hydrodynamic description of plasma. In other words, the plasma is considered to be cold electron liquid, and positron bunches are aggregate of macroparticles. Positron bunches are considered to be homogeneous cylinders in the longitudinal direction. Positrons in bunches are distributed in radial direction according to Gaussian distribution. It is shown that in this case only first bunch is in the finite longitudinal electrical wakefield notequal to zero. Other bunches are in zero longitudinal electrical wakefield Ez=0. Between bunches of this sequence longitudinal electrical wakefield and radial force are not zero. The focusing radial force in regions, occupied by bunches, is constant along each bunch Fr=const. Between bunches the radial force is inhomogeneous. All positron bunches of sequence are focused identically and uniformly.
Plasma wake lens in which all short relativistic electron bunches of sequence are focused identically and uniformly is studied analytically and by numerical simulation. For two types of lenses necessary parameters of focused sequence of relativistic
Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wake
Earlier, the authors found a mechanism for the sequence of short relativistic electron bunches, which leads to resonant excitation of the wakefield, even if the repetition frequency of bunches differs from the plasma frequency. In this case, the sync
Ultra-intense lasers are expected to produce, in near future, relativistic electron-positron plasma droplets. Considering the local photon production rate in complete leading order in quantum electrodynamics (QED), we point out that these droplets are interesting sources of gamma ray flashes
Laser-plasma technology promises a drastic reduction of the size of high energy electron accelerators. It could make free electron lasers available to a broad scientific community, and push further the limits of electron accelerators for high energy