ﻻ يوجد ملخص باللغة العربية
Systems with the coexistence of different stable attractors are widely exploited in systems biology in order to suitably model the differentiating processes arising in living cells. In order to describe genetic regulatory networks several deterministic models based on systems of nonlinear ordinary differential equations have been proposed. Few studies have been developed to characterize how either an external input or the coupling can drive systems with different coexisting states. For the sake of simplicity, in this manuscript we focus on systems belonging to the class of radial isochron clocks that exhibits hard excitation, in order to investigate their complex dynamics, local and global bifurcations arising in presence of constant external inputs. In particular the occurrence of saddle node on limit cycle bifurcations is detected.
Threshold values in population dynamics can be formulated as spectral bounds of matrices, determining the dichotomy of population persistence and extinction. For a square matrix $mu A + Q$, where $A$ is a quasi-positive matrix describing population d
The gradient flow structure of the model introduced in [CG99] for the dynamics of screw dislocations is investigated by means of a generalised minimising-movements scheme approach. The assumption of a finite number of available glide directions, toge
We investigate the large time behavior of $N$ particles restricted to a smooth closed curve in $mathbb{R}^d$ and subject to a gradient flow with respect to Euclidean hyper-singular repulsive Riesz $s$-energy with $s>1.$ We show that regardless of the
A feasible model is introduced that manifests phenomena intrinsic to iterative complex analytic maps (such as the Mandelbrot set and Julia sets). The system is composed of two coupled alternately excited oscillators (or self-sustained oscillators). T
We consider networks of dynamical units that evolve in time according to different laws, and are coupled to each other in highly irregular ways. Studying how to steer the dynamics of such systems towards a desired evolution is of great practical inte