ﻻ يوجد ملخص باللغة العربية
In this paper we describe a generalisation and adaptation of Kedlayas algorithm for computing the zeta function of a hyperelliptic curve over a finite field of odd characteristic that the author used for the implementation of the algorithm in the Magma library. We generalise the algorithm to the case of an even degree model. We also analyse the adaptation of working with the $x^idx/y^3$ rather than the $x^idx/y$ differential basis. This basis has the computational advantage of always leading to an integral transformation matrix whereas the latter fails to in small genus cases. There are some theoretical subtleties that arise in the even degree case where the two differential bases actually lead to different redundant eigenvalues that must be discarded.
By constructing suitable Borcherds forms on Shimura curves and using Schofers formula for norms of values of Borcherds forms at CM-points, we determine all the equations of hyperelliptic Shimura curves $X_0^D(N)$. As a byproduct, we also address the
We discuss the computation of coefficients of the L-series associated to a hyperelliptic curve over Q of genus at most 3, using point counting, generic group algorithms, and p-adic methods.
Given a hyperelliptic curve $C$ of genus $g$ over a number field $K$ and a Weierstrass model $mathscr{C}$ of $C$ over the ring of integers ${mathcal O}_K$ (i.e. the hyperelliptic involution of $C$ extends to $mathscr{C}$ and the quotient is a smooth
We analyze the distribution of unitarized L-polynomials Lp(T) (as p varies) obtained from a hyperelliptic curve of genus g <= 3 defined over Q. In the generic case, we find experimental agreement with a predicted correspondence (based on the Katz-Sar
Let $K$ be a field of characteristic different from $2$, $bar{K}$ its algebraic closure. Let $n ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without r