ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperelliptic curves, L-polynomials, and random matrices

263   0   0.0 ( 0 )
 نشر من قبل Andrew Sutherland
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the distribution of unitarized L-polynomials Lp(T) (as p varies) obtained from a hyperelliptic curve of genus g <= 3 defined over Q. In the generic case, we find experimental agreement with a predicted correspondence (based on the Katz-Sarnak random matrix model) between the distributions of Lp(T) and of characteristic polynomials of random matrices in the compact Lie group USp(2g). We then formulate an analogue of the Sato-Tate conjecture for curves of genus 2, in which the generic distribution is augmented by 22 exceptional distributions, each corresponding to a compact subgroup of USp(4). In every case, we exhibit a curve closely matching the proposed distribution, and can find no curves unaccounted for by our classification.



قيم البحث

اقرأ أيضاً

We discuss the computation of coefficients of the L-series associated to a hyperelliptic curve over Q of genus at most 3, using point counting, generic group algorithms, and p-adic methods.
113 - Jia-Wei Guo , Yifan Yang 2015
By constructing suitable Borcherds forms on Shimura curves and using Schofers formula for norms of values of Borcherds forms at CM-points, we determine all the equations of hyperelliptic Shimura curves $X_0^D(N)$. As a byproduct, we also address the problem of whether a modular form on Shimura curves $X_0^D(N)/W_{D,N}$ with a divisor supported on CM-divisors can be realized as a Borcherds form, where $X_0^D(N)/W_{D,N}$ denotes the quotient of $X_0^D(N)$ by all the Atkin-Lehner involutions. The construction of Borcherds forms is done by solving certain integer programming problems.
We study the sequence of zeta functions $Z(C_p,T)$ of a generic Picard curve $C:y^3=f(x)$ defined over $mathbb{Q}$ at primes $p$ of good reduction for $C$. We define a degree 9 polynomial $psi_fin mathbb{Q}[x]$ such that the splitting field of $psi_f (x^3/2)$ is the $2$-torsion field of the Jacobian of $C$. We prove that, for all but a density zero subset of primes, the zeta function $Z(C_p,T)$ is uniquely determined by the Cartier-Manin matrix $A_p$ of $C$ modulo $p$ and the splitting behavior modulo $p$ of $f$ and $psi_f$; we also show that for primes $equiv 1 pmod{3}$ the matrix $A_p$ suffices and that for primes $equiv 2 pmod{3}$ the genericity assumption on $C$ is unnecessary. An element of the proof, which may be of independent interest, is the determination of the density of the set of primes of ordinary reduction for a generic Picard curve. By combining this with recent work of Sutherland, we obtain a practical deterministic algorithm that computes $Z(C_p,T)$ for almost all primes $p le N$ using $Nlog(N)^{3+o(1)}$ bit operations. This is the first practical result of this type for curves of genus greater than 2.
93 - Yuri G. Zarhin 2021
Let $K$ be a field of characteristic different from $2$, $bar{K}$ its algebraic closure. Let $n ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without r epeated roots. Let us consider genus $(n-1)/2$ hyperelliptic curves $C_f: y^2=f(x)$ and $C_h: y^2=h(x)$, and their jacobians $J(C_f)$ and $J(C_h)$, which are $(n-1)/2$-dimensional abelian varieties defined over $K$. Suppose that one of the polynomials is irreducible and the other reducible. We prove that if $J(C_f)$ and $J(C_h)$ are isogenous over $bar{K}$ then both jacobians are abelian varieties of CM type with multiplication by the field of $n$th roots of $1$.
95 - Qing Liu 2021
Given a hyperelliptic curve $C$ of genus $g$ over a number field $K$ and a Weierstrass model $mathscr{C}$ of $C$ over the ring of integers ${mathcal O}_K$ (i.e. the hyperelliptic involution of $C$ extends to $mathscr{C}$ and the quotient is a smooth model of ${mathbb P}^1_K$ over ${mathcal O}_K$), we give necessary and sometimes sufficient conditions for $mathscr{C}$ to be defined by a global Weierstrass equation. In particular, if $C$ has everywhere good reduction, we prove that it is defined by a global Weierstrass equation with invertible discriminant if the class number $h_K$ is prime to $2(2g+1)$, confirming a conjecture of M. Sadek.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا