ﻻ يوجد ملخص باللغة العربية
The static baby Skyrme model is investigated in the extreme limit where the energy functional contains only the potential and Skyrme terms, but not the Dirichlet energy term. It is shown that the model with potential $V=frac12(1+phi_3)^2$ possesses solutions with extremely unusual localization properties, which we call semi-compactons. These minimize energy in the degree 1 homotopy class, have support contained in a semi-infinite rectangular strip, and decay along the length of the strip as $x^{-log x}$. By gluing together several semi-compactons, it is shown that every homotopy class has linearly stable solutions of arbitrarily high, but quantized, energy. For various other choices of potential, compactons are constructed with support in a closed disk, or in a closed annulus. In the latter case, one can construct higher winding compactons, and complicated superpositions in which several closed string-like compactons are nested within one another. The constructions make heavy use of the invariance of the model under area-preserving diffeomorphisms, and of a topological lower energy bound, both of which are established in a general geometric setting. All the solutions presented are classical, that is, they are (at least) twice continuously differentiable and satisfy the Euler-Lagrange equation of the model everywhere.
In this paper we investigate the Q-ball Ansatz in the baby Skyrme model. First, the appearance of peakons, i.e. solutions with extremely large absolute values of the second derivative at maxima, is analyzed. It is argued that such solutions are intri
We study large-amplitude one-dimensional solitary waves in photonic crystals featuring competition between linear and nonlinear lattices, with minima of the linear potential coinciding with maxima of the nonlinear pseudopotential, and vice versa (inv
We develop a one-parameter family of static baby Skyrme models that do not require a potential term to admit topological solitons. This is a novel property as the standard baby Skyrme model must contain a potential term in order to have stable solito
We examine the effect of dissipation on traveling waves in nonlinear dispersive systems modeled by Benjamin- Bona- Mahony (BBM)-like equations. In the absence of dissipation the BBM-like equations are found to support soliton and compacton/anticompac
In this talk, we describe recent developments in the Skyrme model. Our main focus is on discussing various effects which need to be taken into account, when calculating the properties of light atomic nuclei in the Skyrme model. We argue that an impor