ﻻ يوجد ملخص باللغة العربية
We study large-amplitude one-dimensional solitary waves in photonic crystals featuring competition between linear and nonlinear lattices, with minima of the linear potential coinciding with maxima of the nonlinear pseudopotential, and vice versa (inverted nonlinear photonic crystals, INPhCs), in the case of the saturable self-focusing nonlinearity. Such crystals were recently fabricated using a mixture of SU-8 and Rhodamine-B optical materials. By means of numerical methods and analytical approximations, we find that large-amplitude solitons are broad sharply localized stable pulses (quasi-compactons, QCs). With the increase of the totalpower, P, the QCs centroid performs multiple switchings between minima and maxima of the linear potential. Unlike cubic INPhCs, the large-amplitude solitons are mobile in the medium with the saturable nonlinearity. The threshold value of the kick necessary to set the soliton in motion is found as a function of P. Collisions between moving QCs are considered too.
We report a general description of quasi-phase-matched parametric process in nonlinear photonic crystals (NLPC) by extending the conventional X-ray diffraction theory in solids. Under the virtual wave approximation, phase-matching resonance is equiva
Topological photonics aims to utilize topological photonic bands and corresponding edge modes to implement robust light manipulation, which can be readily achieved in the linear regime of light-matter interaction. Importantly, unlike solid state phys
At the exit surface of a photonic crystal, the intensity of the diffracted wave can be periodically modulated, showing a maximum in the positive (forward diffracted) or in the negative (diffracted) direction, depending on the slab thickness. This thi
Quadrupole topological phases, exhibiting protected boundary states that are themselves topological insulators of lower dimensions, have recently been of great interest. Extensions of these ideas from current tight binding models to continuum theorie
We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structu