ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the conjugacy growth function of a group, which counts the number of conjugacy classes which intersect a ball of radius $n$ centered at the identity. We prove that in the case of virtually polycyclic groups, this function is either exponential or polynomially bounded, and is polynomially bounded exactly when the group is virtually nilpotent. The proof is fairly short, and makes use of the fact that any polycyclic group has a subgroup of finite index which can be embedded as a lattice in a Lie group, as well as exponential radical of Lie groups and Dirichlets approximation theorem.
It is observed that the conjugacy growth series of the infinite fini-tary symmetric group with respect to the generating set of transpositions is the generating series of the partition function. Other conjugacy growth series are computed, for other g
In this paper we give asymptotics for the conjugacy growth of the soluble Baumslag-Solitar groups $BS(1,k)$, $kgeq 2$, with respect to the standard generating set, by providing a complete description of geodesic conjugacy representatives. We show tha
We give a unified solution to the conjugacy problem for Thompsons groups F, T, and V. The solution uses strand diagrams, which are similar in spirit to braids and generalize tree-pair diagrams for elements of Thompsons groups. Strand diagrams are clo
In this paper we give a recursive formula for the conjugacy growth series of a graph product in terms of the conjugacy growth and standard growth series of subgraph products. We also show that the conjugacy and standard growth rates in a graph produc
In this paper we introduce and study the conjugacy ratio of a finitely generated group, which is the limit at infinity of the quotient of the conjugacy and standard growth functions. We conjecture that the conjugacy ratio is $0$ for all groups except