ترغب بنشر مسار تعليمي؟ اضغط هنا

Conjugacy and Dynamics in Thompsons Groups

391   0   0.0 ( 0 )
 نشر من قبل Francesco Matucci
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a unified solution to the conjugacy problem for Thompsons groups F, T, and V. The solution uses strand diagrams, which are similar in spirit to braids and generalize tree-pair diagrams for elements of Thompsons groups. Strand diagrams are closely related to piecewise-linear functions for elements of Thompsons groups, and we use this correspondence to investigate the dynamics of elements of F. Though many of the results in this paper are known, our approach is new, and it yields elegant proofs of several old results.



قيم البحث

اقرأ أيضاً

378 - M. Hull 2010
In this paper, we consider the conjugacy growth function of a group, which counts the number of conjugacy classes which intersect a ball of radius $n$ centered at the identity. We prove that in the case of virtually polycyclic groups, this function i s either exponential or polynomially bounded, and is polynomially bounded exactly when the group is virtually nilpotent. The proof is fairly short, and makes use of the fact that any polycyclic group has a subgroup of finite index which can be embedded as a lattice in a Lie group, as well as exponential radical of Lie groups and Dirichlets approximation theorem.
In this paper we introduce and study the conjugacy ratio of a finitely generated group, which is the limit at infinity of the quotient of the conjugacy and standard growth functions. We conjecture that the conjugacy ratio is $0$ for all groups except the virtually abelian ones, and confirm this conjecture for certain residually finite groups of subexponential growth, hyperbolic groups, right-angled Artin groups, and the lamplighter group.
191 - Tushar Kanta Naik , Neha Nanda , 2019
The twin group $T_n$ is a right angled Coxeter group generated by $n-1$ involutions and the pure twin group $PT_n$ is the kernel of the natural surjection from $T_n$ onto the symmetric group on $n$ symbols. In this paper, we investigate some structur al aspects of these groups. We derive a formula for the number of conjugacy classes of involutions in $T_n$, which quite interestingly, is related to the well-known Fibonacci sequence. We also derive a recursive formula for the number of $z$-classes of involutions in $T_n$. We give a new proof of the structure of $Aut(T_n)$ for $n ge 3$, and show that $T_n$ is isomorphic to a subgroup of $Aut(PT_n)$ for $n geq 4$. Finally, we construct a representation of $T_n$ to $Aut(F_n)$ for $n ge 2$.
There are limit groups having non-conjugate elements whose images are conjugate in every free quotient. Towers over free groups are freely conjugacy separable.
We construct a finitely presented group with quadratic Dehn function and undecidable conjugacy problem. This solves E. Rips problem formulated in 1992. v2: misprints corrected. v3: lemmas 4.7, 4.10 corrected, more misprints fixed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا