ترغب بنشر مسار تعليمي؟ اضغط هنا

Residual Hubble-bubble effects on supernova cosmology

158   0   0.0 ( 0 )
 نشر من قبل Benjamin Sinclair
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Even in a universe that is homogeneous on large scales, local density fluctuations can imprint a systematic signature on the cosmological inferences we make from distant sources. One example is the effect of a local under-density on supernova cosmology. Also known as a Hubble-bubble, it has been suggested that a large enough under-density could account for the supernova magnitude- redshift relation without the need for dark energy or acceleration. Although the size and depth of under-density required for such an extreme result is extremely unlikely to be a random fluctuation in an on-average homogeneous universe, even a small under-density can leave residual effects on our cosmological inferences. In this paper we show that there remain systematic shifts in our cosmological parameter measure- ments, even after excluding local supernovae that are likely to be within any small Hubble-bubble. We study theoretically the low-redshift cutoff typically imposed by supernova cosmology analyses, and show that a low-redshift cut of z0 sim 0.02 may be too low based on the observed inhomogeneity in our local universe. Neglecting to impose any low-redshift cutoff can have a significant effect on the cosmological pa- rameters derived from supernova data. A slight local under-density, just 30% under-dense with scale 70h^{-1} Mpc, causes an error in the inferred cosmological constant density {Omega}{Lambda} of sim 4%. Imposing a low-redshift cutoff reduces this systematic error but does not remove it entirely. A residual systematic shift of 0.99% remains in the inferred value {Omega}{Lambda} even when neglecting all data within the currently pre- ferred low-redshift cutoff of 0.02. Given current measurement uncertainties this shift is not negligible, and will need to be accounted for when future measurements yield higher precision.



قيم البحث

اقرأ أيضاً

The Hubble constant Ho describes not only the expansion of local space at redshift z ~ 0, but is also a fundamental parameter determining the evolution of the universe. Recent measurements of Ho anchored on Cepheid observations have reached a precisi on of several percent. However, this problem is so important that confirmation from several methods is needed to better constrain Ho and, with it, dark energy and the curvature of space. A particularly direct method involves the determination of distances to local galaxies far enough to be part of the Hubble flow through water vapor (H2O) masers orbiting nuclear supermassive black holes. The goal of this article is to describe the relevance of Ho with respect to fundamental cosmological questions and to summarize recent progress of the the `Megamaser Cosmology Project (MCP) related to the Hubble constant.
We present an analysis of peculiar velocities and their effect on supernova cosmology. In particular, we study (a) the corrections due to our own motion, (b) the effects of correlations in peculiar velocities induced by large-scale structure, and (c) uncertainties arising from a possible local under- or over-density. For all of these effects we present a case study of their impact on the cosmology derived by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). Correcting supernova redshifts for the CMB dipole slightly over-corrects nearby supernovae that share some of our local motion. We show that while neglecting the CMB dipole would cause a shift in the derived equation of state of Delta w ~ 0.04 (at fixed matter density) the additional local-motion correction is currently negligible (Delta w<0.01). We use a covariance-matrix approach to statistically account for correlated peculiar velocities. This down-weights nearby supernovae and effectively acts as a graduated version of the usual sharp low-redshift cut. Neglecting coherent velocities in the current sample causes a systematic shift of ~2% in the preferred value of w and will therefore have to be considered carefully when future surveys aim for percent-level accuracy. Finally, we perform n-body simulations to estimate the likely magnitude of any local density fluctuation (monopole) and estimate the impact as a function of the low-redshift cutoff. We see that for this aspect the low-z cutoff of z=0.02 is well-justified theoretically, but that living in a putative local density fluctuation leaves an indelible imprint on the magnitude-redshift relation.
We study correlated fluctuations of Type~Ia supernova observables due to peculiar velocities of both the observer and the supernova host galaxies, and their impact on cosmological parameter estimation. We demonstrate using the CosmicFlows-3 dataset t hat at low redshifts the corrections for peculiar velocities in the JLA catalogue have been systematically underestimated. By querying a horizon-size N-body simulation we find that compared to a randomly placed observer, an observer in an environment like our local Universe will see 2-8 times stronger correlations between supernovae in the JLA catalogue. Hence the covariances usually employed assuming a typical observer are unphysical and underestimate the effects of coherent motion of the supernova host galaxies. Contrary to previous studies which asserted that this should have negligible effect on cosmological parameter estimation, we find that when peculiar velocities are treated consistently the JLA data favours significantly smaller values of the dark energy density than in the standard $Lambda$CDM model. A joint fit to simultaneously determine the cosmological parameters and the bulk flow indicates that the latter is around 250 km/s even beyond 200$h^{-1}$ Mpc. The local bulk flow is thus an essential nuisance parameter which must be included in cosmological model fitting when analysing supernova data.
The calculation of the averaged Hubble expansion rate in an averaged perturbed Friedmann-Lemaitre-Robertson-Walker cosmology leads to small corrections to the background value of the expansion rate, which could be important for measuring the Hubble c onstant from local observations. It also predicts an intrinsic variance associated with the finite scale of any measurement of H_0, the Hubble rate today. Both the mean Hubble rate and its variance depend on both the definition of the Hubble rate and the spatial surface on which the average is performed. We quantitatively study different definitions of the averaged Hubble rate encountered in the literature by consistently calculating the backreaction effect at second order in perturbation theory, and compare the results. We employ for the first time a recently developed gauge-invariant definition of an averaged scalar. We also discuss the variance of the Hubble rate for the different definitions.
The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a f ew statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in portion the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the $4.4sigma$ tension between the Planck estimate of the Hubble constant $H_0$ and the SH0ES collaboration measurements. After showing the $H_0$ evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting new physics models that could solve this tension and discuss how the next decade experiments will be crucial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا