ﻻ يوجد ملخص باللغة العربية
The calculation of the averaged Hubble expansion rate in an averaged perturbed Friedmann-Lemaitre-Robertson-Walker cosmology leads to small corrections to the background value of the expansion rate, which could be important for measuring the Hubble constant from local observations. It also predicts an intrinsic variance associated with the finite scale of any measurement of H_0, the Hubble rate today. Both the mean Hubble rate and its variance depend on both the definition of the Hubble rate and the spatial surface on which the average is performed. We quantitatively study different definitions of the averaged Hubble rate encountered in the literature by consistently calculating the backreaction effect at second order in perturbation theory, and compare the results. We employ for the first time a recently developed gauge-invariant definition of an averaged scalar. We also discuss the variance of the Hubble rate for the different definitions.
In relativistic inhomogeneous cosmology, structure formation couples to average cosmological expansion. A conservative approach to modelling this assumes an Einstein--de Sitter model (EdS) at early times and extrapolates this forward in cosmological
We present a detailed study of the methodology for correlating `dark sirens (compact binaries coalescences without electromagnetic counterpart) with galaxy catalogs. We propose several improvements on the current state of the art, and we apply them t
It is shown, from the two independent approaches of McCrea-Milne and of Zeldovich, that one can fully recover the set equations corresponding to the relativistic equations of the expanding universe of Friedmann-Lemaitre-Robertson-Walker geometry. Alt
In this paper, we constrain the dimensionless Compton wavelength parameter $B_0$ of $f(R)$ gravity as well as the mass of sterile neutrino by using the cosmic microwave background observations, the baryon acoustic oscillation surveys, and the linear
Galileon gravity offers a robust gravitational theory for explaining cosmic acceleration, having a rich phenomenology of testable behaviors. We explore three classes of Galileon models -- standard uncoupled, and linearly or derivatively coupled to ma