ﻻ يوجد ملخص باللغة العربية
Isophotal analysis of M87, using data from the Advanced Camera for Surveys, reveals a projected displacement of 6.8 +/- 0.8 pc (~ 0.1 arcsec) between the nuclear point source (presumed to be the location of the supermassive black hole, SMBH) and the photo-center of the galaxy. The displacement is along a position angle of 307 +/- 17 degrees and is consistent with the jet axis. This suggests the active SMBH in M87 does not currently reside at the galaxy center of mass, but is displaced in the counter-jet direction. Possible explanations for the displacement include orbital motion of an SMBH binary, gravitational perturbations due to massive objects (e.g., globular clusters), acceleration by an asymmetric or intrinsically one-sided jet, and gravitational recoil resulting from the coalescence of an SMBH binary. The displacement direction favors the latter two mechanisms. However, jet asymmetry is only viable, at the observed accretion rate, for a jet age of >0.1 Gyr and if the galaxy restoring force is negligible. This could be the case in the low density core of M87. A moderate recoil ~1 Myr ago might explain the disturbed nature of the nuclear gas disk, could be aligned with the jet axis, and can produce the observed offset. Alternatively, the displacement could be due to residual oscillations resulting from a large recoil that occurred in the aftermath of a major merger any time in the last 1 Gyr.
Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by accretion of matter onto super massive black holes. While the measured width profiles of such jets on large scales agree with theories of magnetic collimation
We study a model in which supermassive black holes (SMBHs) can grow by the combined action of gas accretion on heavy seeds and mergers of both heavy (m_s^h=10^5 Msol) and light (m_s^l = 10^2 Msol) seeds. The former result from the direct collapse of
The mass of the central black hole in the giant elliptical galaxy M84 has previously been measured by two groups using the same observations of emission-line gas with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope, givi
We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of ~40 micro-as, consistent with the size and shape of the lensed photon orb
The rapid TeV $gamma-$ray variability detected in the well-known nearby radio galaxy M87 implies an extremely compact emission region (5-10 Schwarzschild radii) near the horizon of the supermassive black hole in the galactic center. TeV photons are a