ترغب بنشر مسار تعليمي؟ اضغط هنا

Jet Launching Structure Resolved Near the Supermassive Black Hole in M87

274   0   0.0 ( 0 )
 نشر من قبل Sheperd Doeleman
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by accretion of matter onto super massive black holes. While the measured width profiles of such jets on large scales agree with theories of magnetic collimation, predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations at 1.3mm wavelength of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 +/- 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.



قيم البحث

اقرأ أيضاً

Understanding the processes that drive galaxy formation and shape the observed properties of galaxies is one of the most interesting and challenging frontier problems of modern astrophysics. We now know that the evolution of galaxies is critically sh aped by the energy injection from accreting supermassive black holes (SMBHs). However, it is unclear how exactly the physics of this feedback process affects galaxy formation and evolution. In particular, a major challenge is unraveling how the energy released near the SMBHs is distributed over nine orders of magnitude in distance throughout galaxies and their immediate environments. The best place to study the impact of SMBH feedback is in the hot atmospheres of massive galaxies, groups, and galaxy clusters, which host the most massive black holes in the Universe, and where we can directly image the impact of black holes on their surroundings. We identify critical questions and potential measurements that will likely transform our understanding of the physics of SMBH feedback and how it shapes galaxies, through detailed measurements of (i) the thermodynamic and velocity fluctuations in the intracluster medium (ICM) as well as (ii) the composition of the bubbles inflated by SMBHs in the centers of galaxy clusters, and their influence on the cluster gas and galaxy growth, using the next generation of high spectral and spatial resolution X-ray and microwave telescopes.
Isophotal analysis of M87, using data from the Advanced Camera for Surveys, reveals a projected displacement of 6.8 +/- 0.8 pc (~ 0.1 arcsec) between the nuclear point source (presumed to be the location of the supermassive black hole, SMBH) and the photo-center of the galaxy. The displacement is along a position angle of 307 +/- 17 degrees and is consistent with the jet axis. This suggests the active SMBH in M87 does not currently reside at the galaxy center of mass, but is displaced in the counter-jet direction. Possible explanations for the displacement include orbital motion of an SMBH binary, gravitational perturbations due to massive objects (e.g., globular clusters), acceleration by an asymmetric or intrinsically one-sided jet, and gravitational recoil resulting from the coalescence of an SMBH binary. The displacement direction favors the latter two mechanisms. However, jet asymmetry is only viable, at the observed accretion rate, for a jet age of >0.1 Gyr and if the galaxy restoring force is negligible. This could be the case in the low density core of M87. A moderate recoil ~1 Myr ago might explain the disturbed nature of the nuclear gas disk, could be aligned with the jet axis, and can produce the observed offset. Alternatively, the displacement could be due to residual oscillations resulting from a large recoil that occurred in the aftermath of a major merger any time in the last 1 Gyr.
One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole system in their cores. Here we present an observational evidence for the first spectroscopica lly resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically applied for spectroscopic binary stars we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for an eccentric, sub-parsec Keplerian orbit of a 15.9-year period. The flux maximum in the lightcurve correspond to the approaching phase of a secondary component towards the observer. According to the obtained results we speculate that the periodic variations in the observed H{alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into black hole mass growth process.
168 - Ru-Sen Lu 2014
The Event Horizon Telescope (EHT) is a project to assemble a Very Long Baseline Interferometry (VLBI) network of mm wavelength dishes that can resolve strong field General Relativistic signatures near a supermassive black hole. As planned, the EHT wi ll include enough dishes to enable imaging of the predicted black hole shadow, a feature caused by severe light bending at the black hole boundary. The center of M87, a giant elliptical galaxy, presents one of the most interesting EHT targets as it exhibits a relativistic jet, offering the additional possibility of studying jet genesis on Schwarzschild radius scales. Fully relativistic models of the M87 jet that fit all existing observational constraints now allow horizon-scale images to be generated. We perform realistic VLBI simulations of M87 model images to examine detectability of the black shadow with the EHT, focusing on a sequence of model images with a changing jet mass load radius. When the jet is launched close to the black hole, the shadow is clearly visible both at 230 and 345 GHz. The EHT array with a resolution of 20-30$mu$as resolution ($sim$2-4 Schwarzschild radii) is able to image this feature independent of any theoretical models and we show that imaging methods used to process data from optical interferometers are applicable and effective for EHT data sets. We demonstrate that the EHT is also capable of tracing real-time structural changes on a few Schwarzschild radii scales, such as those implicated by VHE flaring activity of M87. While inclusion of ALMA in the EHT is critical for shadow imaging, generally the array is robust against loss of a station.
To obtain a better understanding of the location and mechanisms for the production of the gamma-ray emission in jets of AGN we present a detailed study of the HST-1 structure, 0.8 arcsec downstream the jet of M87, previously identified as a possible candidate for TeV emission. HST-1 shows a very peculiar structure with superluminal as well as possible stationary sub-components, and appears to be located in the transition from a parabolic to a conical jet shape, presumably leading to the formation of a recollimation shock. This scenario is supported by our new RHD simulations in which the interaction of a moving component with a recollimation shock leads to the appearance of a new superluminal component. To discern whether HST-1 is produced by a recollimation shock or some other MHD instability, we present new polarimetric 2.2 and 5 GHz VLBA, as well as 15, 22 and 43 GHz JVLA observations obtained between November 2012 and March 2013.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا