ﻻ يوجد ملخص باللغة العربية
In the standard geometric approach, the entanglement of a pure state is $sin^2theta$, where $theta$ is the angle between the entangled state and the closest separable state of products of normalised qubit states. We consider here a generalisation of this notion by considering separable states that consist of products of unnormalised states of different dimension. The distance between the target entangled state and the closest unnormalised product state can be interpreted as a measure of the entanglement of the target state. The components of the closest product state and its norm have an interpretation in terms of, respectively, the eigenvectors and eigenvalues of the reduced density matrices arising in the Schmidt decomposition of the state vector. For several cases where the target state has a large degree of symmetry, we solve the system of equations analytically, and look specifically at the limit where the number of qubits is large.
In the standard geometric approach to a measure of entanglement of a pure state, $sin^2theta$ is used, where $theta$ is the angle between the state to the closest separable state of products of normalized qubit states. We consider here a generalizati
In a previous paper we examined a geometric measure of entanglement based on the minimum distance between the entangled target state of interest and the space of unnormalized product states. Here we present a detailed study of this entanglement measu
In this work, we present an investigation on the spatial entanglement entropies in the helium atom by using highly correlated Hylleraas functions to represent the S-wave states. Singlet-spin 1sns 1Se states (with n = 1 to 6) and triplet-spin 1sns 3Se
The new method of multivariate data analysis based on the complements of classical probability distribution to quantum state and Schmidt decomposition is presented. We considered Schmidt formalism application to problems of statistical correlation an
We consider the Schmidt decomposition of a bipartite density operator induced by the Hilbert-Schmidt scalar product, and we study the relation between the Schmidt coefficients and entanglement. First, we define the Schmidt equivalence classes of bipa