ﻻ يوجد ملخص باللغة العربية
In the standard geometric approach to a measure of entanglement of a pure state, $sin^2theta$ is used, where $theta$ is the angle between the state to the closest separable state of products of normalized qubit states. We consider here a generalization of this notion to separable states consisting of products of unnormalized states of different dimension. In so doing, the entanglement measure $sin^2theta$ is found to have an interpretation as the distance between the state to the closest separable state. We also find the components of the closest separable state and its norm have an interpretation in terms of, respectively, the eigenvectors and eigenvalues of the reduced density matrices arising in the Schmidt decomposition of the state vector.
In the standard geometric approach, the entanglement of a pure state is $sin^2theta$, where $theta$ is the angle between the entangled state and the closest separable state of products of normalised qubit states. We consider here a generalisation of
In a previous paper we examined a geometric measure of entanglement based on the minimum distance between the entangled target state of interest and the space of unnormalized product states. Here we present a detailed study of this entanglement measu
In this work, we present an investigation on the spatial entanglement entropies in the helium atom by using highly correlated Hylleraas functions to represent the S-wave states. Singlet-spin 1sns 1Se states (with n = 1 to 6) and triplet-spin 1sns 3Se
The new method of multivariate data analysis based on the complements of classical probability distribution to quantum state and Schmidt decomposition is presented. We considered Schmidt formalism application to problems of statistical correlation an
We consider the Schmidt decomposition of a bipartite density operator induced by the Hilbert-Schmidt scalar product, and we study the relation between the Schmidt coefficients and entanglement. First, we define the Schmidt equivalence classes of bipa