ترغب بنشر مسار تعليمي؟ اضغط هنا

Man made global warming explained - closing the blinds

200   0   0.0 ( 0 )
 نشر من قبل Terry Sloan
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the big problems of the age concerns Global Warming, and whether it is man-made or natural. Most climatologists believe that it is very likely to be the former but some scientists (mostly non-climatologists) subscribe to the latter. Unsurprisingly, the population at large is often confused and and is not convinced either way. Here we try to explain the principles of man-made global warming in a simple way. Our purpose is to try to understand the story which the climatologists are telling us through their rather complicated general circulation models. Although the effects in detail are best left to the climatologists models, we show that for the Globe as a whole the effects of man-made global warming can be demonstrated in a simple way. The simple model of only the direct heating from the absorption of infrared radiation, illustrates the main principles of the science involved. The predicted temperature increase due to the increase of greenhouse gases in the atmosphere over the last century describes reasonably well at least most of the observed temperature increase.



قيم البحث

اقرأ أيضاً

144 - Nicola Scafetta 2013
Errors in applying regression models and wavelet filters used to analyze geophysical signals are discussed: (1) multidecadal natural oscillations (e.g. the quasi 60-year Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO) and Pa cific Decadal Oscillation (PDO)) need to be taken into account for properly quantifying anomalous accelerations in tide gauge records such as in New York City; (2) uncertainties and multicollinearity among climate forcing functions prevent a proper evaluation of the solar contribution to the 20th century global surface temperature warming using overloaded linear regression models during the 1900-2000 period alone; (3) when periodic wavelet filters, which require that a record is pre-processed with a reflection methodology, are improperly applied to decompose non-stationary solar and climatic time series, Gibbs boundary artifacts emerge yielding misleading physical interpretations. By correcting these errors and using optimized regression models that reduce multicollinearity artifacts, I found the following results: (1) the sea level in New York City is not accelerating in an alarming way, and may increase by about 350 mm from 2000 to 2100 instead of the previously projected values varying from 1130 mm to 1550 mm estimated using the methods proposed by Sallenger et al. (2012) and Boon (2012), respectively; (2) the solar activity increase during the 20th century contributed about 50% of the 0.8 K global warming observed during the 20th century instead of only 7-10% (IPCC, 2007; Benestad and Schmidt, 2009; Lean and Rind, 2009). These findings stress the importance of natural oscillations and of the sun to properly interpret climatic changes.
298 - T.Sloan , A W Wolfendale 2007
It has been claimed by others that observed temporal correlations of terrestrial cloud cover with `the cosmic ray intensity are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implicatio ns would be very great. We have examined this claim to look for evidence to corroborate it. So far we have not found any and so our tentative conclusions are to doubt it. Such correlations as appear are more likely to be due to the small variations in solar irradiance, which, of course, correlate with cosmic rays. We estimate that less than 15% of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 35 years is due to this cause.
In order to investigate the scope of uncertainty in projections of GCMs for Tehran province, a multi-model projection composed of 15 models is employed. The projected changes in minimum temperature, maximum temperature, precipitation, and solar radia tion under the A1B scenario for Tehran province are investigated for 2011-2030, 2046-2065, and 2080-2099. GCM projections for the study region are downscaled by the LARS-WG5 model. Uncertainty among the projections is evaluated from three perspectives: large-scale climate scenarios downscaled values, and mean decadal changes. 15 GCMs unanimously project an increasing trend in the temperature for the study region. Also, uncertainty in the projections for the summer months is greater than projection uncertainty for other months. The mean absolute surface temperature increase for the three periods is projected to be about 0.8{deg}C, 2.4{deg}C, and 3.8{deg}C in the summers, respectively. The uncertainty of the multi-model projections for precipitation in summer seasons, and the radiation in the springs and falls is higher than other seasons for the study region. Model projections indicate that for the three future periods and relative to their baseline period, springtime precipitation will decrease about 5%, 10%, and 20%, and springtime radiation will increase about 0.5%, 1.5%, and 3%, respectively. The projected mean decadal changes indicate an increase in temperature and radiation and a decrease in precipitation. Furthermore, the performance of the GCMs in simulating the baseline climate by the MOTP method does not indicate any distinct pattern among the GCMs for the study region.
Sampling from a Boltzmann distribution is NP-hard and so requires heuristic approaches. Quantum annealing is one promising candidate. The failure of annealing dynamics to equilibrate on practical time scales is a well understood limitation, but does not always prevent a heuristically useful distribution from being generated. In this paper we evaluate several methods for determining a useful operational temperature range for annealers. We show that, even where distributions deviate from the Boltzmann distribution due to ergodicity breaking, these estimates can be useful. We introduce the concepts of local and global temperatures that are captured by different estimation methods. We argue that for practical application it often makes sense to analyze annealers that are subject to post-processing in order to isolate the macroscopic distribution deviations that are a practical barrier to their application.
Emission metrics, a crucial tool in setting effective equivalences between greenhouse gases, currently require a subjective, arbitrary choice of time horizon. Here, we propose a novel framework that uses a specific temperature goal to calculate the t ime horizon that aligns with scenarios satisfying that temperature goal. We analyze the Intergovernmental Panel on Climate Change Special Report on Global Warming of 1.5 C Scenario Database 1 to find that justified time horizons for the 1.5 C and 2 C global warming goals of the Paris Agreement are 22 +/- 1 and 55 +/- 1 years respectively. We then use these time horizons to quantify time-dependent emission metrics. Using methane as an example, we find that emission metrics that align with the 1.5 C and 2 C warming goals respectively (using their associated time horizons) are 80 +/- 1 and 45 +/- 1 for the Global Warming Potential, 62 +/- 1 and 11 +/- 1 for the Global Temperature change Potential, and 89 +/- 1 and 50 +/- 1 for the integrated Global Temperature change Potential. Using the most commonly used time horizon, 100 years, results in underestimating methane emission metrics by 40-70% relative to the values we calculate that align with the 2 C goal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا