ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic firing rate models

155   0   0.0 ( 0 )
 نشر من قبل Jonathan Touboul
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review a recent approach to the mean-field limits in neural networks that takes into account the stochastic nature of input current and the uncertainty in synaptic coupling. This approach was proved to be a rigorous limit of the network equations in a general setting, and we express here the results in a more customary and simpler framework. We propose a heuristic argument to derive these equations providing a more intuitive understanding of their origin. These equations are characterized by a strong coupling between the different moments of the solutions. We analyse the equations, present an algorithm to simulate the solutions of these mean-field equations, and investigate numerically the equations. In particular, we build a bridge between these equations and Sompolinsky and collaborators approach (1988, 1990), and show how the coupling between the mean and the covariance function deviates from customary approaches.



قيم البحث

اقرأ أيضاً

268 - Nobuo Yoshida 2009
We consider a simple discrete-time Markov chain with values in $[0,infty)^{Z^d}$. The Markov chain describes various interesting examples such as oriented percolation, directed polymers in random environment, time discretizations of binary contact pa th process and the voter model. We study the phase transition for the growth rate of the total number of particles in this framework. The main results are roughly as follows: If $d ge 3$ and the Markov chain is not too random, then, with positive probability, the growth rate of the total number of particles is of the same order as its expectation. If on the other hand, $d=1,2$, or the Markov chain is random enough, then the growth rate is slower than its expectation. We also discuss the above phase transition for the dual processes and its connection to the structure of invariant measures for the Markov chain with proper normalization.
159 - Dan Pirjol 2021
We study the stochastic growth process in discrete time $x_{i+1} = (1 + mu_i) x_i$ with growth rate $mu_i = rho e^{Z_i - frac12 var(Z_i)}$ proportional to the exponential of an Ornstein-Uhlenbeck (O-U) process $dZ_t = - gamma Z_t dt + sigma dW_t$ sam pled on a grid of uniformly spaced times ${t_i}_{i=0}^n$ with time step $tau$. Using large deviation theory methods we compute the asymptotic growth rate (Lyapunov exponent) $lambda = lim_{nto infty} frac{1}{n} log mathbb{E}[x_n]$. We show that this limit exists, under appropriate scaling of the O-U parameters, and can be expressed as the solution of a variational problem. The asymptotic growth rate is related to the thermodynamical pressure of a one-dimensional lattice gas with attractive exponential potentials. For $Z_t$ a stationary O-U process the lattice gas coincides with a system considered previously by Kac and Helfand. We derive upper and lower bounds on $lambda$. In the large mean-reversion limit $gamma n tau gg 1$ the two bounds converge and the growth rate is given by a lattice version of the van der Waals equation of state. The predictions are tested against numerical simulations of the stochastic growth model.
We introduce a stochastic analysis of Grassmann random variables suitable for the stochastic quantization of Euclidean fermionic quantum field theories. Analysis on Grassmann algebras is developed here from the point of view of quantum probability: a Grassmann random variable is an homomorphism of an abstract Grassmann algebra into a quantum probability space, i.e. a $C^{ast}$-algebra endowed with a suitable state. We define the notion of Gaussian processes, Brownian motion and stochastic (partial) differential equations taking values in Grassmann algebras. We use them to study the long time behavior of finite and infinite dimensional Langevin Grassmann stochastic differential equations driven by Gaussian space-time white noise and to describe their invariant measures. As an application we give a proof of the stochastic quantization and of the removal of the space cut-off for the Euclidean Yukawa model, indicating also how this method can be extended to other models of quantum fields.
252 - Nobuo Yoshida 2009
We consider a discrete-time stochastic growth model on the $d$-dimensional lattice with non-negative real numbers as possible values per site. The growth model describes various interesting examples such as oriented site/bond percolation, directed po lymers in random environment, time discretizations of the binary contact path process. We show the equivalence between the slow population growth and a localization property in terms of replica overlap. The main novelty of this paper is that we obtain this equivalence even for models with positive probability of extinction at finite time. In the course of the proof, we characterize, in a general setting, the event on which an exponential martingale vanishes in the limit.
119 - Shui Feng 2008
The behavior of the Poisson-Dirichlet distribution with small mutation rate is studied through large deviations. The structure of the rate function indicates that the number of alleles is finite at the instant when mutation appears. The large deviati on results are then used to study the asymptotic behavior of the homozygosity, and the Poisson-Dirichlet distribution with symmetric selection. The latter shows that several alleles can coexist when selection intensity goes to infinity in a particular way as the mutation rate approaches zero.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا